首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some of the properties of particleboard made from paulownia   总被引:3,自引:0,他引:3  
The objective of this study was to determine some of the properties of experimental particleboard panels made from low-quality paulownia (Paulownia tomentosa). Chemical properties including holocellulose, cellulose, lignin contents, water solubility, and pH level of the wood were also analyzed. Three-layer experimental panels were manufactured with two density levels using urea–formaldehyde as a binder. Modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), screw-holding strength, thickness swelling, and surface roughness of the specimens were evaluated. Panels with densities of 0.65 g/cm3 and manufactured using a 7-min press time resulted in higher mechanical properties than those of made with densities of 0.55 g/cm3 and press times of 5 min. Based on the initial findings of this study, it appears that higher values of solubility and lignin content of the raw material contributed to better physical and mechanical properties of the experimental panels. All types of strength characteristics of the samples manufactured from underutilized low-quality paulownia wood met the minimum strength requirements of the European Standards for general uses.  相似文献   

2.
Physical and mechanical properties of medium density fiberboards (MDF) made from various mixtures of wood fibers and stone pine (Pinus pinea L.) cones were evaluated using European standards. MDF panels were manufactured using standardized procedures that simulated industrial production at the laboratory. Six panel types were made from mixtures of wood fiber/cone flour, 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 percents, respectively. Addition of the cone flour into the MDF significantly reduced formaldehyde emission from the panel. In addition, the addition of 10% cone flour also improved water resistance of the MDF panels made using urea–formaldehyde (UF) resin. However, further addition of the cone flour into the panel negatively influenced their water resistance. Flexural properties and internal bond strength decreased with the increase of cone flour content in the panel. The UF resin is the main source of formaldehyde emission from the UF-bonded wood-based panels. Depending on addition of the cone flour in the panels, the formaldehyde emission values ranged from 2.6% to 55.3% lower than the panels made from 100% wood fiber. Based on the findings obtained from this study, pine cone can be used as a renewable biological formaldehyde catcher as an alternative to the traditional formaldehyde catchers for E1 Class MDF manufacture.  相似文献   

3.
This work investigated some mechanical, physical and free formaldehyde emission properties of heat-treated MDF. For this purpose, MDF panels were subjected to varying heat treatment temperatures (155°C, 165°C and 175°C), durations (2.5?h., 3.5?h. and 4.5?h.) and waiting times after hot pressing (30?min., 120?min. and 600?min). Thickness swelling (TS), water absorption (WA), free formaldehyde emission (FFE), bending strength (BS), modulus of elasticity (MOE), tensile strength perpendicular to fibers (TSPF) for treated and untreated samples were tested and evaluated statistically. Consequently, after the heat treatment values of tensile strength, bending strength and modulus of elasticity were almost negatively affected relatively, but the thickness swelling and water absorption and quantities of free formaldehyde were improved positively of MDF samples.  相似文献   

4.
速生杉木的改性研究——UF树脂浸渍后热压法改性   总被引:21,自引:0,他引:21  
采用脲醛树脂(UF)浸渍后热压的方法,对速生杉木气干材进行改性。试验结果表明:1.改性后杉木的静曲强度平均提高42%,弹性模量平均提高17%,吸水率平均降低45%,吸水厚度膨胀率基本无变化;2.热压工艺中的压力对改性杉木的MOR,MOE影响最大,树脂浸渍时间是影响其吸水率和吸水厚度膨胀率的主要因素。  相似文献   

5.
Wheat straw particleboard bonded with a urea–formaldehyde (UF) resin, usually employed in the manufacture of wood-based particleboards, or with a resin based on epoxidised oil was manufactured using a compression molding machine. The effects of resin type on internal bond strength, flexural modulus, and thickness swelling were examined. The properties of boards using UF resins were poor. Internal bond strength and thickness swelling, linked to adhesion quality, were especially low. The high compatibility between straw particles and oil-based resin was explained in terms of straw surface free energy. In straw, this parameter exhibits a much lower polar component than wood species and leads to higher compatibility with resins based on oil than with water-soluble systems like UF.  相似文献   

6.
Straw-wood composites bonded with various adhesive systems   总被引:2,自引:0,他引:2  
In order to study the feasibility of utilizing wheat straw as an alternative raw material for panels, experimental one-layer particleboards were produced by mixing straw with industrial wood particles in various proportions (100:0, 75:25, 50:50, 25:75, 0:100). Three different adhesive systems were used for blending the raw materials: a UF resin (E2 grade), a PMDI resin and various UF:PMDI combinations (10:0, 8:2, 7:3, 6:4, 5:5). The evaluation of the mechanical and hygroscopic properties of panels showed the following results: Partial replacement of wood particles from straw in panels bonded with pure UF resin resulted in deterioration of all properties except linear swelling. Partial or whole substitution of wood by straw in PMDI bonded panels, improved the bending strength and all hygroscopic properties of the panels but reduced the internal bond (dry and wet) and screw holding strength, although to a much smaller degree compared to UF bonded panels. The properties of panels bonded with various UF:PMDI combinations and comprising 50% wood and 50% straw were considerably improved by increasing the PMDI content. In terms of the properties, pure straw panels or panels made of certain wood/straw mixtures, if bonded with PMDI resin or the appropriate UF:PMDI combination, can be used for specific applications where high quality panels are required according to the specifications of the related standards. Received 11 February 1998  相似文献   

7.
采用异氰酸酯(ISO)改性的脲醛树脂胶制造低密度稻壳-木材复合材料。稻壳与木质刨花的混合比例为1:1,施胶量为7%,试验结果表明,异氰酸酯改性的脲醛树脂胶黏剂适用于低密度稻壳-木材复合材料,其物理力学性能明显优于使用传统的脲醛树脂胶黏剂。低密度稻壳-木材复合材料的物理力学性能随着改性剂异氰酸酯用量的增加而提高。密度是稻壳-木材复合材料物理力学性能的重要影响因素,低密度稻壳-木材复合材料的物理力学性能随着密度的增加而提高。在设定密度为0.45g/m~3和0.5g/cm~3的条件下,3:4的ISO/UF的稻壳-木材复合材料的物理力学性能均达到日本刨花板工业标准(JIS A5908)的要求。  相似文献   

8.
Medium density fibreboard (MDF) was produced from fibres treated with maleated polypropylene wax. The objectives of this study were to investigate the effect of fibre treatment with maleated polypropylene wax on the advancing and receding contact angle and wicking of MDF panels by the Wilhelmy plate method; to verify the chemical reactions occurring between fibres and maleated polypropylene wax by infrared spectroscopy, and to verify if there are relationships with the water absorption of panels. Three maleated polypropylene wax contents (0, 3, 5%) and two resin types (urea–formaldehyde, UF and melamine–urea–formaldehyde, MUF) were considered in this study. Our results showed that the treatment increased the advancing contact angle of panels bonded with UF resin. The receding contact angles of MDF panels produced from treated fibres with 5% maleated polypropylene wax content were also increased by the treatment. Also, the wicking was reduced by the treatment independent of the maleated polypropylene wax content. Reductions of the wicking were 59% for panels bonded with UF resin and 73% for panels bonded with MUF. Relationships between the wicking and water absorption were observed. Chemical analysis realized by infrared spectroscopy did not detect the presence of an esterification reaction between wood fibres and anhydride groups of the maleated polypropylene wax. This suggests, therefore, that an esterification reaction did not take place or that chemical modifications were so small that they are not visible by infrared spectroscopy.  相似文献   

9.
Medium-density fibreboard (MDF) was produced from fibres treated with maleated polypropylene wax. The objectives of this study were to improve the dimensional stability of MDF panels by this treatment; to observe the maleated polypropylene wax distribution within the MDF panels using conventional fluorescence microscopy; and to determine the effects of the treatment on the mechanical properties and vertical density profile of the panels. MDF panels were produced from two resin types (urea-formaldehyde and melamine-urea-formaldehyde) and three maleated polypropylene wax contents (0, 3 and 5%). Photomicrographs show that maleated polypropylene wax forms agglomerates within the MDF panels which is an evidence of its poor distribution in our experimental conditions. Our results show an important reduction on thickness swelling and water absorption after water soaking for panels produced from treated fibres. Linear expansion and contraction in adsorption and desorption conditions between 80 and 50% relative humidity increased following fibre treatment. However, thickness swelling and shrinkage in similar conditions showed an important reduction following fibre treatment. The fibre treatment did not have negative effects on the mechanical properties or the vertical density profile of MDF panels. The modulus of rupture and modulus of elasticity in bending were increased by the treatment independently of maleated polypropylene wax content. The internal bond strength increased following the addition of 5% maleated polypropylene wax content.  相似文献   

10.
Laminated products, such as laminated veneer lumber (LVL) or plywood (PW), have become important recently. The objective of this study was to determine and compare properties of panels fabricated with veneers of Gmelina arborea trees in a fast-growth plantation and glued with phenol formaldehyde resin. The results showed that LVL and PW physical and mechanical properties are comparable to those of solid wood with a specify gravity of 0.60. Moreover, these panels can be cataloged into group 2 of PS 1–95 of the Voluntary Products Standard of the United States. The difference in physical properties was not statistically significant between LVL and PW panels, except for water absorption. Some mechanical properties, such as hardness and glue-line shear, modulus of rupture in perpendicular flexure, nail and screw withdrawal parallel, and perpendicular strength, were statistically different between LVL and PW. However, no differences were established for the modulus of elasticity, tensile strength parallel to the surface, or tensile strength perpendicular to the surface. The differences were attributed to the venners’ orientation in the panels studied.  相似文献   

11.
广宁县竹香骨下脚料制备竹碎料刨花板及其复合改性研究   总被引:1,自引:0,他引:1  
采用竹香骨下脚料为原料,以脲醛树脂和三聚氰胺改性脲醛树脂胶粘剂制备竹碎料刨花板,并与木纤维复合改性,检测并分析了内结合强度、静曲强度、弹性模量和吸水性。结果表明,在热压温度为160℃时,竹碎料板和竹木复合碎料板的物理力学性能均满足国标规定在干燥状态下使用的普通用板要求。当木纤维与竹碎料复合后,复合板材的静曲强度和弹性模量有一定程度提高,但内结合强度降低。  相似文献   

12.
本文阐述了在脲醛树脂中加入MS—03改性三聚氰胺树脂的方法,此法可以降低模压木制品的吸水厚度膨胀,提高产品的耐水性,使所得制品适用于我国南方湿热地区。  相似文献   

13.
本文对国际人造板工业的原料、环境保护问题的研究和开发,以及新技术的应用作了简要回顾,并对其社会背景及前提条件作了分析。其中特别是对于原料的开拓,提出了我国应如何吸取发达国家的经验的看法。  相似文献   

14.
ABSTRACT

The objective of the work was to evaluate the efficacy of two new polyphosphate-based fire retardants (FRs) and one commercial product named Siriono® on the fire performance and physical–mechanical properties of medium density fibreboard (MDF) fabricated in the laboratory from Scots pine (Pinus sylvestris L.) wood. The fibres were treated with aqueous solutions of fire retardants, at 12% loading (dry salt on dry wood), and bonded with a melamine urea formaldehyde (MUF) adhesive. The physical and mechanical properties of panels were assessed using the European standards, whereas their fire performance was evaluated using an in-house method and the Cone calorimeter. In overall, the chemicals added enhanced the fire and smoke properties of the panels to varying degrees. Critical FR parameters such as peak heat release rate (peak HRR), total heat release (THR) and total smoke production (TSP) were significantly improved in the FR-treated panels, as exhibited in cone calorimeter tests. However, the internal bond strength of treated panels largely decreased by the addition of fire retardants, while thickness swell and water absorption negatively affected to a significant extent. In contrast, the formaldehyde release of the panels was considerably decreased at the E1 class level, with the incorporation of the polyphosphate-based additives.  相似文献   

15.
Properties of PP/wood flour/organomodified montmorillonite nanocomposites   总被引:2,自引:1,他引:1  
In this research, composites based on polypropylene (PP), beech wood flour, and organomodified montmorillonite (OMMT) were prepared and characterized for their properties. The blend nanocomposites were prepared by melt mixing of PP/WF at 50% weight ratios with various amounts of OMMT (0, 3, and 6 per hundred compounds (phc)) in a Hakee internal mixer. Then the samples were made by injection molding. The influence of organomodified montmorillonite contents on clay dispersion, physical and mechanical properties of PP/wood flour composites were investigated. Results indicated that the flexural strength and modulus, tensile strength and modulus increased by addition of 3 per hundred compounds (phc) of organomodified montmorillonite (OMMT), but decreased with 6 phc OMMT addition. However, impact strength, water absorption and thickness swelling of the composites decreased with increasing nanoclay loading. X-ray diffraction patterns (XRD) and transmission electron microscopy (TEM) revealed that the nanocomposites formed were intercalated. Also, morphological findings showed that samples containing 3 phc of OMMT had higher order of intercalation.  相似文献   

16.
ABSTRACT

High global production of medium-density fiberboard (MDF) in recent years could generate an equal quantity of waste MDF at the end of its service life, requiring recycling of waste MDF instead of landfilling or incineration. This study investigated effects of the addition of recycled fiber (RF) obtained from surface laminated MDFs with three different materials to the properties of three-layer recycled MDF (rMDF). Three types of surface laminates such as low-pressure laminate, polyethylene terephthalate, and polyester coating were hammer milled, and then went through a patent-pending fiber recovery system to obtain the resultant RFs that were added to the core layer of rMDF. These RFs at three contents (10, 20, and 30%) were blended with 12% of urea-formaldehyde (UF) resin prior to hot-pressing. Statistical analysis showed that the best internal bonding strength, modulus of rupture, and modulus of elasticity of rMDF panels were obtained for LPL-rMDF with a 20% RF content. Thickness swelling, water absorption, and formaldehyde emission of rMDF were reduced by increasing the RF content. These findings suggest that a minimum RF content of 20% can be replaced with virgin fibers for the rMDF manufacture, indicating the feasibility of recycling waste laminated MDF into three-layer rMDF.  相似文献   

17.
The properties of medium-density fiberboard (MDF) panels as affected by wood fiber characteristics were investigated. Wood chips from three softwood and one hardwood species were refined under the same refining conditions to make four different types of fibers. The resulting fibers were characterized by fiber size distribution, bulk density, pH value, and buffering capacity. Using the same resin system and hot-pressing parameters, MDF panels were produced and evaluated for internal bonding (IB), modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling, and linear expansion. The pH values and alkaline buffering capacities of raw materials were reduced considerably after refining. IB was strongly related to the pH value of fibers. The mechanical properties increased with alkaline buffering capacity. IB, MOR, and MOE increased with the bulk density of fibers. Increased proportions of coarse fibers had negative effects on the panel mechanical properties.  相似文献   

18.
王芳  黄洛华 《木材工业》2000,14(4):28-29,32
通过使用LLM型UF树脂制造橡胶木和赤桉中密度纤维板的研究,评价用该树脂制造橡胶木和赤桉中密度纤维板的适应性。橡胶木和赤桉各50%比例温和后施以LLM型UF树脂,按照MDF常规工艺压制9,12,16mm的试验板。结果表明:板材物理力学性能及甲醛释放量指标均达到GB11718.2-89标准规定的要求。  相似文献   

19.
游离甲醛和人造板释放甲醛   总被引:20,自引:1,他引:20  
马心  颜镇 《木材工业》1997,11(2):27-29
甲醛是室内空气污染源,它常与甲醛系统粘接连在一起,本文根据国内外资料评述人造板甲醛释放量,分析了脲醛树脂的水解和人造板释放甲醛的机理,还介绍了甲醛的毒害,各国政府的有关法规以各种降低甲醛释放量的方法。  相似文献   

20.
Bamboo has gained increasing attention as an alternative raw material for use in the manufacture of composite boards. Three-layer OSBs were made using Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne) strands to evaluate the effects of strand length and pre-treatment techniques on the physical, mechanical, and durability properties. Three different strand lengths, namely 50, 60, and 70?mm, were prepared. Prior to the manufacture into OSB, the strands were immersed in cold water for 24?h and in 6% acetic anhydrides solution for 48?h. The OSBs were fabricated using 5% MDI resin based on the strand dry weight. The results indicated that MOR and MOE values in perpendicular to the grain direction were much influenced by strand length. The dimensional stability of OSB was slightly improved by immersing the strands in acetic anhydride solution. Immersing strands in cold water and acetic anhydride solution improved the resistance of OSB against subterranean termite (Macrotermes gylvus) attack under the adopted experimental condition. All OSB parameters manufactured in this experiment were better than the minimum requirement of CSA 0437.0 (Grade O–2) standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号