共查询到13条相似文献,搜索用时 93 毫秒
1.
刘忠潮 《中国农村水利水电》1991,(10)
本文介绍有压灌溉管道水流挟沙力的一种计算公式。文中对公式中各有关参数的确定,提出了计算方法,方便了公式的应用。本文公式可用于低压灌溉及喷灌管道防止淤积的水力计算。 相似文献
2.
针对含无压段的长距离调水工程,采用二阶Godunov格式的有限体积法进行有压与无压交接水力计算模拟.首先根据有限体积法,分别对有压与无压的控制方程离散,采用Riemann求解器计算通量,并引入MINMOD斜率限制器进行数据重构.边界处采用虚拟边界,实现了计算区域与边界处的统一.在1个无压计算时步内,进行数个有压计算,从而实现有压与无压的交接计算.将所建模型与传统特征线法计算结果进行对比,验证了所建模型的精确性.结果表明,在库朗数小于1.00时,MOC在有压流与无压流均会产生较大的计算误差,而FVM计算更加准确.对比了有压与无压交接水力计算结果与有压段独立计算的结果,后者结果更加保守,工程经济性较差,证明了提出的有压与无压的交接水力计算的必要性与准确性. 相似文献
3.
长距离有压输水工程一般通过设置阻力环的水头损失替代法进行整体模型试验研究。依托深圳市北坑水库输水隧洞工程,对不同雷诺数、环数和布置方式下阻力环的水头损失替代效果及其变化规律进行数值模拟研究发现:当雷诺数Re>0.32×105后,几乎不会造成阻力环局部水头损失系数与阻力环后旋涡区长度变化;孔径比d/D减小或距径比L/D增大会增强阻力环的水头损失替代效果;当d/D=0.8,L/D=0.5,环数n>2时,阻力环平均局部水头损失系数Kd随环数n增加而减小,当环数n>20后Kd不再随环数变化。在此基础上推导出环数影响系数ε随环数n的变化规律及其拟合曲线,以及阻力替代段总局部水头损失和替代管道长度计算公式。通过分析环数对漩涡区长度的影响,阻力替代段后需设置不小于2.5D的过渡段才能保证水流流态恢复至未替代状态。 相似文献
4.
为更好了解管道中的气液两相流运动过程,揭示气液在不透明管道中的分布规律及运动形态,提高管道自压输水在实际工程中的安全性.基于已有研究成果,应用Fluent软件进行三维水平管道的数值模拟研究,并分析了不同管径、流速下两相流流态,及压力、流速等各项水力要素的变化.结果表明:三维CFD模拟可较好地展示管道气液两相分布规律;增... 相似文献
5.
采用三维CFD方法对起伏管道内水气耦合作用的过程进行建模和模拟,研究气团压缩-膨胀-变形的三维动态特性.在考虑气团压缩性、水体弹性基础上,采用Standard k-ε、RNG k-ε 和Realizable k-ε这3种湍流模型进行模拟研究,并将三维计算结果、现有一维模型计算结果与试验结果进行了对比分析.结果表明:与一维模型相比,所采用的三维CFD模型能够较准确地模拟起伏管道内水流冲击滞留气团瞬变过程中气水形态变化和压力波动;Standard k-ε湍流模型能够较好地模拟压力峰值和波动周期,RNG k-ε 、Realizable k-ε湍流模型次之;整个过程中,水-气两相互相掺混,水-气交界面自由变化,并不垂直于管道中心线,与管道中心线呈一定的夹角存在;三维CFD计算结果可以很好地模拟较短长度气团的动态特性变化. 相似文献
6.
采用进气道甲醇电控喷射方式,在农用单缸柴油机中掺烧甲醇,喷醇压力和甲醇温度会改变每循环喷醇量,直接影响单缸柴油机甲醇的掺烧比。采用试验的方法,在不同喷射压力、甲醇温度条件下,测量喷醇器流量随喷醇脉宽的变化规律,对循环喷醇量特性进行分析,采用数值分析的方法,提出循环喷醇量的修正MAP。结果表明,脉宽在0~0.5 ms喷醇器处于无效喷射阶段,0.5~1.5 ms循环流量随脉宽增大呈非线性增加,脉宽大于1.5 ms,循环流量随脉宽增大基本呈线性增长;循环喷醇量随喷醇压力和甲醇温度的提高而增大,1.5~10 ms阶段,喷射压力每提升25 kPa,循环流量平均提高4.8%,甲醇温度每提升15 ℃,循环流量平均提高3.2%;喷醇压力和甲醇温度变化时,提出的修正MAP能够有效对喷醇量进行校正。 相似文献
7.
基于输运段对荷电颗粒凝并效率的影响,建立了荷电颗粒输运试验系统,以研究管内颗粒输运流场随电压的变化情况.利用网状目标法测定颗粒群平均荷电量,应用流场测量技术PIV系统研究外加电场对颗粒运动的作用,运用二值化互相关图像处理算法,获得输运断面上的荷电颗粒速度、涡量以及湍动能分布图.试验发现:当充电电压低于-10kV时,颗粒的荷质比随充电电压的降低而增加,在-60kV时基本达到饱和荷电量;输运段中颗粒速度、涡量的分布值随电压的降低而增加;湍动能的分布呈现单峰特性,在-50kV时出现最大值. 相似文献
8.
将导叶片旋流器作为产生螺旋流的装置,采用理论分析和模型试验相结合的方法,对该旋流器下游断面的螺旋流流速特性进行了研究.研究结果表明:旋流器下游断面流速整体上关于管道圆心呈120°旋转对称分布.从管壁到管道断面中心旋流器下游断面的轴向流速逐渐增大,而周向流速和径向流速则均呈现先增大后减小的变化趋势.最大轴向速度位于管道断面中心处,最大周向流速位于距管壁约1cm处,最大的径向速度位于距管壁约2cm处.旋流器导叶片扭转角越大,在下游断面产生的螺旋流的周向流速、强度就越大,螺旋流的影响距离就越远.在距离旋流器导叶片后缘2m之前,螺旋流衰减较快,且随着旋流器的导叶片扭转角的增大,螺旋流衰减加快.研究成果可为进一步完善螺旋流旋流输送理论提供理论依据. 相似文献
9.
为提高管道输油泵水力性能,以某型号大型管道输油泵为研究对象,针对导叶相位角度对其水力性能的影响进行研究.采用Pro/E与Gambit软件对该输油泵全流道内流场进行三维造型与网格划分.应用计算流体动力学软件CFX对输油泵在6个导叶相位(0°,6°,12°,18°,24°和30°)及5个流量工况(0.8Qd,0.9Qd,1.0Qd,1.1Qd和1.2Qd)下的内流场进行定常数值计算,得到了不同导叶相位下输油泵的性能曲线,对比分析了不同导叶相位下输油泵的内部流动情况.研究结果表明:不同相位时,在设计工况下扬程差别较大,扬程最大相差6%,大流量及小流量工况下扬程的差别较小;设计工况下效率差别较小,大流量及小流量工况下效率的差别增大,效率最大相差2%;导叶叶片背面出口处的低速区是影响输油泵水力性能的重要因素,不同导叶相位下,蜗壳隔舌处的流场不同,进而影响输油泵的水力性能;受导叶流道出口低速区的影响,导叶相位为6°,12°及18°时,蜗壳扩散段流态较差,导致输油泵效率偏低,且蜗壳出口速度分布非常不均,不利于输油泵高效平稳地运行. 相似文献
10.
为深入探讨筒装料管道水力输送过程中同种型号双车运行时所产生的动边界条件下有压管道内部断面压力分布以及压降特性问题,对型号100 mm×60 mm、荷载750 g的管道双车在30,40,50,60,70 m3/h等不同流量作用下两车车身环隙断面、车间断面的压力分布以及车组沿程压降特性进行试验研究和分析,两车运行时车间距离条件为10 cm.研究表明:当流量增大时各测试断面压力值增大;双车车体沿程压力呈现先减小后增大的趋势;沿水流方向,后车引起的压降值明显高于前车;后车环隙断面内,自固定边壁向动边界压力值呈现“降-升-降”趋势,前车环隙内则为总体下降趋势,且后车环隙压力梯度高于前车;不同流量条件下,车间断面内压力分布基本为管道边壁附近值较大,内部值较小,且分布不均匀,压力梯度随流量增大而增大. 相似文献
11.
针对空间导叶传统设计方法的不足,以离心泵的空间导叶为研究对象,采用设计工况下泵的扬程和效率提升为优化目标,在保证叶片进口安放角、出口安放角、导叶轴面等设计参数不变的前提下,通过CFD数值模拟计算不同包角的空间导叶叶型与泵的水力效率之间的关系,从而寻找效率最优的导叶叶型.计算结果表明:空间导叶的叶片包角对泵的内流场结构和泵的外特性有重要影响,在其他流道参数不变的情况下, 存在使泵效率最高的最优包角;随着导叶叶片包角的增大,叶片工作面上的高压区域逐步由进口向出口移动,叶片由“前载型”逐步变为“后载型”;小包角时,由于叶片前部分的叶片安放角变化较大,在叶片背面的中部到后部的部分区域存在低速脱流区,且随着叶片包角的增大该脱流区面积逐渐减小并逐渐向出口方向移动;随着叶片包角的增大,叶片进口堵塞现象加重,导叶进口速度逐渐增大.揭示了空间导叶流动结构与导叶包角、型线间的内在关系,为空间导叶的优化及设计提供一定的理论依据. 相似文献
12.
为研究离心泵在小流量工况运行下性能及其内部流动特性,以型号为IS160-50-65的离心泵为研究对象,采用商用化软件Ansys CFX 12.0对模型离心泵的叶轮进口、叶轮流道以及蜗壳流道组成的全流场进行定常数值计算.同时,为了提高数值计算的准确性,考虑采用3种不同的网格数对模型离心泵的扬程进行网格无关性分析.且从离心泵的外特性及其内部流场分析了不同小流量工况下离心泵性能的变化规律.研究结果表明:与试验结果相比,设计工况下,扬程预测偏差为1.47%,效率预测偏差为3.61%;且随着流量降低,计算扬程的偏差值呈一定的下降趋势,计算效率的偏差值逐渐增大.另外,在设计工况下,离心泵的内部流动比较均匀;而在小流量工况下,离心泵进口管道及叶轮流道均出现回流现象,而回流引起的旋涡流有时甚至会堵塞叶轮流道;在极小流量Q/Qd=0.2时,回流区域已延伸至全部的进水管路中. 相似文献
13.
采用标准k-ε湍流模型对180 mm管内径的3种绕转结构(传统回转、半回转、大回转)内部流动进行了数值模拟,对比和分析了水力损失和出口流态,其中出口流态参数包括平均湍动能、速度分布曲线和迪恩涡.结果表明:随着弯管曲率R/d的增大,3种形式的水炮主体的水力损失均减小,相同的R/d=1.4情况下传统回转结构具有最小的水力损失,半回转结构水力损失最大;绕转结构的出口速度分布曲线显示,管轴线附近速度低而速度峰值出现在靠近管壁附近,表明出口处流体带有旋转的特点;在R/d=1.4情况下,大回转结构形式的出口具有最小的平均湍动能值,出口流线具有一个顺时针方向的基本涡,与传统回转结构出口涡形态一致,涡量积分后得到的旋涡强度小于传统回转结构.大回转的绕转结构形式有利于后续水炮炮管和喷嘴内部流动. 相似文献