首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以旋喷泵为试验对象,完成了旋壳与叶轮同步变转速性能试验以及旋壳与叶轮非同步差速数值研究.为避免各向同性涡黏假设,数值计算选择雷诺应力RSM linear pressure-strain模型,将数值计算与试验结果对比以验证其可信度.结果表明:变转速试验中该泵的流量与扬程符合相似定律,最优效率基本保持不变,各转速下最优效率的最大偏差为3.1%,趋于常数.差速试验中旋壳转速在升高引起径向液体压力梯度增大,导致旋壳内任意位置半径r大于叶轮出口半径r2区域的液体压力增加,而旋壳内任意位置半径小于叶轮出口半径区域液体的压力降低.受叶轮与旋壳差速扰动影响,集流管进口和尾涡区域湍流动能数值普遍较高,该区域能量损失大,涡的大小、形态、涡心位置随旋壳转速不断变化,主要分布在叶轮出口与流动中心区.与额定工况相比,旋壳转速的升高能够提高旋喷泵的扬程,但由内壁面带动液体快速旋转增加液体能量的方式会导致泵效率下降.旋壳转速在一定范围内的降低有利于能源的高效利用,提高泵效率,该泵试验范围内最优旋壳与叶轮转速比为0.75,研究结果对今后旋喷泵差速运行有指导意义.  相似文献   

2.
旋喷泵内部压力提升是叶轮与旋壳共同作用的结果,一直以来泵腔内部压力根据叶轮出口压力确定,忽略了旋壳的圆筒效应,导致泵腔压力计算不够准确。为解决这一问题,基于旋壳圆筒效应建立旋喷泵内部压力数学模型,引入液体旋转系数,应用试验与数值计算相结合的方法对液体旋转系数进行了分析验证,并对液体旋转系数的影响因素进行了敏感性分析。结果表明:可以建立旋喷泵内部压力数学模型,通过理论计算内部压力分布,旋喷泵内部压力计算需考虑旋壳效应;试验泵液体旋转系数为0.75,在该系数下泵腔内部压力理论值与试验值吻合度较高;以一复式叶轮旋喷泵为实例,验证了该旋喷泵内部压力数学模型的可靠性。液体旋转系数影响因素敏感性分析表明:壁面粗糙度、转速、流量对液体旋转系数影响较小,试验范围内液体旋转系数介于0.736~0.764之间,波动较小,不超过3%,可以认为是定值。本研究结果可为旋喷泵内部压力理论计算及集流管安装高度选取提供参考。  相似文献   

3.
离心泵叶轮平衡腔内液体流动特性及圆盘损失分析   总被引:4,自引:0,他引:4  
在离心泵0.8Qsp、Qsp、1.2Qsp流量工况点,外特性及平衡腔内流动特性数值计算结果与试验结果基本一致的基础上,研究平衡腔液体流场分布情况,绘制平衡腔内液体不同角度和半径无量纲圆周、径向分速度沿轴向分布曲线,分析平衡腔液体流动特性,计算平衡腔区域叶轮盖板外侧圆盘摩擦损失。结果表明:平衡腔液体流动存在核心区和两湍流边界层,主要流动特征为圆周剪切流与径向压差流。同一流量点,平衡腔流动核心区无量纲圆周分速度随半径的增大而减小,无量纲径向分速度近似为零,而湍流边界层液体受泄漏流影响较大,且不具有轴对称性。流量越小,同一角度和半径的平衡腔液体旋转角速度越小,平衡腔区域叶轮圆盘摩擦损失越大。泵内圆盘摩擦损失理论公式未考虑流量工况变化因素影响,且理论公式结果大于试验结果和数值计算结果。  相似文献   

4.
离心泵泵腔内液体流动数学模型研究   总被引:1,自引:0,他引:1  
在建立泵腔内流体流动的4层流动模型基础上,计算了不同雷诺数、泄漏量条件下泵腔内液体的圆周速度、径向速度及压力沿径向的分布规律。结果表明:泵腔内液体大部分以叶轮旋转角速度的48%作刚体旋转运动,而不是普遍认为的50%;泵腔内压力系数仅是腔体内液体雷诺数的函数,和泄漏量关系不大;雷诺数越小,泵腔内压力梯度沿径向越大;在泵腔内存在雷诺数和泄漏量的最优搭配。  相似文献   

5.
采用连续方程、动量方程、交错网格和Simplec算法求解,对XP300-3型新型低比转数旋转喷射泵矩形叶轮、转子腔和集流管的内部流动进行了全三维数值模拟.分析了旋喷泵内部流动规律,得到了转子腔及集流管内部流动的速度场、压力场及湍动能的分布规律.设计了5种不同进口形状的集流管,并分别整体组合,比较了该5种模型的优劣,找到了集流管内部流动的一些规律.分析及数值模拟结果表明:集流管椭圆型进口长半轴跟转子腔半径相一致,长短半径相差不大更有利于解决过水断面充分入流的问题,进而减少其水力损失;通过对数据结果进行综合平衡分析和比较,得出了最优的参数组合.研究结果可为旋喷泵的性能预测以及集流管的优化设计和能量损失分析提供理论依据.  相似文献   

6.
为了研究喷水推进泵在小流量下效率下降较快的原因,应用计算流体动力学方法对不同工况下的喷水推进泵进行数值模拟,研究进口预旋的产生和发展,分析进口预旋对效率的影响以及转速对进口预旋的作用.结果表明:在设计工况Qd时,首级叶轮进口的绝对速度圆周分量vu接近0,基本不随流道半径的变化而变化,进口预旋可以忽略;0.8Qd时,vu随流道半径的增加出现小幅增大,仅仅在轮缘处有较小的正预旋;从0.6Qd开始,预旋变化明显,流量越小,预旋变化越大.小流量下,降低首级叶轮的转速,可以有效地改善进口预旋,提高泵的效率;通过调节叶轮转速,可以有效地改善泵内部的流动状态并通过比较分析出小流量相对较优的转速.研究结果对于其他比转数的喷水推进泵的进口预旋分析具有重要的指导意义.  相似文献   

7.
准确计算平衡腔液体压力是开平衡孔双密封环叶轮离心泵轴向力计算的关键技术.在设计工况下平衡腔液体压力数学模型计算中,引入了泵腔液体压力损失修正系数,解决了有液体泄漏时泵腔进口与后密封环进口液体压力差的计算问题.以降速后的IS80-50-315型离心泵为例,采用改变叶轮平衡孔直径和后密封环间隙来改变比面积的方法,研究了设计工况下平衡腔液体压力数学模型和轴向力的特性.研究结果表明,设计工况下平衡腔液体压力数学模型特性曲线,可以解决轴向力计算中平衡腔区域叶轮后盖板液体压力差计算这一关键问题;平衡腔液体压力是由平衡孔和后密封环构成的2道“闸阀”协联调节的结果,从控制轴向力角度,可通过轴向力特性曲线寻求叶轮平衡孔直径与后密封环间隙的最佳比值.用2个测试实例,验证了应用设计工况下平衡腔液体压力数学模型计算轴向力的可靠性.  相似文献   

8.
为了研究叶轮后密封环直径大小的变化对离心泵平衡腔液体压力和轴向力的影响,对泵进行了全流道三维建模和仿真模拟;经对比发现,离心泵性能的数值模拟与试验测试结果基本吻合.在此基础上,对泵后密封环直径90~140 mm范围内泵扬程、效率和轴功率进行预测,研究泵设计工况下,后密封环直径对平衡腔内液体压力沿轴向和径向的分布规律,及其对轴向力的影响,并绘制出扬程系数与轴向力系数的量纲为一关系曲线.结果表明:同一流量工况下,增大后密封环直径时,泵扬程降低,效率降低,轴功率提高,且后密封环直径越大,其对泵性能的影响越显著;同一后密封环直径下,平衡腔内液体压力沿轴向基本保持不变,压力由泵轴至密封环出口处沿径向增大;轴向力系数曲线是非线性曲线,当K减小时,轴向力系数逐渐增大,当K为0.25时,轴向力几乎为零,此时泵的轴向力平衡能力最优.  相似文献   

9.
对旋转喷射泵内的流场进行了数值模拟,计算得到了泵内部湍流流场的分布规律,并将计算结果与试验得到的结果进行了对比和分析.对于了解旋喷泵内部流动情况,提高旋喷泵的效率,特别是叶轮和集流管等有关几何参数对泵性能影响,改进旋喷泵的水力设计很有参考价值。  相似文献   

10.
为了解喷水推进泵内部压力脉动特性,以对旋轴流式喷水推进泵为研究对象,应用计算流体动力学(CFD)方法,采用雷诺时均法并引入SST k-ω湍流模型使方程封闭,对对旋轴流式喷水推进泵进行设计工况下非定常数值模拟.经网格无关性检验后,计算得到的推进泵功率与扬程与设计值基本一致.在首级叶轮进口处,首、次级叶轮轮缘间隙处,轴向间隙及导叶进口处设置监测点,监测不同位置的压力脉动数据.得到各监测点的时域图和频域图并对各监测点压力脉动特性进行了对比分析.结果表明:对旋轴流式喷水推进泵内压力脉动主要受叶频的影响,首级叶轮和次级叶轮轮缘间隙处的压力脉动不仅与首、次级叶轮的叶片数有关,还与喷水推进泵叶轮数量有关;受两级叶轮反向旋转的影响,轴线方向上首级叶轮与次级叶轮之间轴向间隙处的压力脉动幅值最大, 轴向间隙的压力受到首级叶轮和次级叶轮的共同影响;次级叶轮出口与导叶进口处压力脉动主要受到导叶回流的影响.  相似文献   

11.
侧流道泵是一种超低比转数径向式叶片泵,流体在侧流道泵中以螺旋形轨迹运动,整个流动过程是一种复杂的三维湍流形式,存在着大量的轴向、径向旋涡。为了研究侧流道泵的内部旋涡特性,以带凸形叶片侧流道泵为研究对象,采用非定常数值模拟的方法,通过试验对比验证了数值模拟的可靠性,并基于数值模拟,利用Q准则对其内部涡旋结构进行可视化分析,分析了涡团分布和涡量波动等特征。结果表明:增加凸形叶片可以扩大侧流道泵的高效区,拓宽侧流道泵的应用范围;带凸形叶片侧流道泵内部涡团主要存在于叶轮流道内,且大部分位于叶轮进出口区域附近及叶轮根部处;随着流量的增加,除了叶轮进口区域,侧流道泵叶轮内涡团变小,且数量显著减少。  相似文献   

12.
为了探究折叶片旋流泵固液两相输送机理,基于CFD-DEM (Computational fluid dynamics-discrete element method)耦合算法,选用油菜籽和黄豆颗粒等比例混合,在不同流量工况和体积分数下对旋流泵进行固液两相流数值模拟和试验研究。同时也研究了折叶片旋流泵内部流动规律及颗粒分布特征。小流量工况下,进口管内螺旋回流长度较长,对进口来流扰动较大。随着流量增大,进口管回流长度逐渐缩短。叶轮前端面旋涡随流量增大,数量先增加后减少,且逐渐向折点方向聚拢。泵内颗粒受循环流和贯通流的共同作用,进口管中心部颗粒主要受贯通流影响,直接穿过无叶腔,冲击叶轮进口;靠近管壁的颗粒受循环流影响较大。无叶腔内颗粒分布呈现出:中心部最高,中间部随外径增大浓度逐渐降低,外缘部浓度稍有上升。叶轮前半部颗粒数量明显少于叶轮后半部,颗粒沿叶片第1段折边运动,在折点处开始发生分离,不再跟随第2段折边。不同工况下,泵进口有不同程度的螺旋回流现象,导致进口过流面积减小。循环流的存在,使得无叶腔和进口管的颗粒充分旋起,泵送能力增强,不易发生堵塞。  相似文献   

13.
为了研究核主泵在定转速工况下的正反转特性,采用相似换算法,基于SST k-ω 湍流模型与块结构化网格,对缩比系数为0.5 的核主泵模型泵进行数值模拟.定义流量从泵进口流向出口为“+”,反之为“-”.在正转工况下分别对-0.8Qd到+2.0Qd流量范围内的16个工况点进行计算、反转工况下对-1.4Qd到+1.0Qd流量范围内的14个工况点进行计算,得到其全特性曲线.计算结果表明:在相同流量工况下,核主泵正转时的扬程与转矩总是高于反转时的扬程与转矩,叶轮扬程与泵扬程存在不同的变化趋势;在正转工况下,在 -0.1Qd到+0.4Qd流量范围内,叶轮扬程曲线呈现反“N”型变化趋势;在反转工况下,在-0.4Qd到+0.1Qd流量范围内,叶轮扬程曲线呈一个明显的“V”型变化趋势;叶轮出口处产生二次流回流现象,这是正转小流量工况下叶轮扬程降低的主要原因,而叶轮与导叶之间过渡段区域内的环形高速带和叶轮流道内的大尺度涡是反转小流量工况下叶轮扬程降低的主要原因.  相似文献   

14.
基于DEM-CFD的旋流泵大颗粒内流特性模拟与试验   总被引:2,自引:0,他引:2  
鉴于抗堵塞性能较优的旋流泵在输送污水时,其过流部件仍存在磨损、半堵塞等问题,将DEM-CFD方法引入旋流泵数值模拟中,研究旋流泵在输送不同粒径、体积分数颗粒时的颗粒运动物理特性,以及颗粒与液相、固壁多向耦合的运动特征,并进行了试验验证。结果表明,由旋流泵输送油菜籽试验可知,外特性计算结果与试验结果基本一致;在该旋流泵模型特征下,进口管与无叶腔区域由循环流引起的颗粒旋转流动现象较为严重,从无叶腔沿着进口壁面螺旋式逆向回流,与进口顺向来流相混达到平衡,试验拍摄结果与数值模拟结果较为相符,说明DEM-CFD耦合方法具有一定可靠性;旋流泵内部存在3种不同的颗粒运输方式,第1种为颗粒随贯通流经由叶轮进入蜗壳,第2种为受循环流影响经由无叶腔直接甩入蜗壳,第3种为颗粒从叶轮前端面区域进入叶轮,再经叶轮进入蜗壳;对蜗壳内流特性进行分析,发现颗粒主要分布在蜗壳后侧,在扩散段到蜗壳出口区域,颗粒随液体以螺旋的方式流出,蜗壳断面叶轮侧形成大小不等的螺旋涡。  相似文献   

15.
为了研究前置离心叶轮对侧流道泵性能以及内部流动特性的影响,基于SST-SAS湍流模型,对不同工况下单级以及多级侧流道泵内部流动进行三维非定常数值模拟,研究了单级与多级侧流道泵扬程、侧流道泵叶轮进出口压力、侧流道间的质量交换以及旋涡结构分布特性.结果表明:添加前置离心叶轮后的多级侧流道泵扬程整体有所提升,侧流道叶轮的进口压力提升了20%,叶轮与侧流道之间的质量流量也提升了约20%,多级侧流道泵叶轮内涡团分布与单级泵分布规律基本相同,添加前置离心叶轮对侧流道泵内部流动影响较小.研究结果为后续多级侧流道泵的空化研究以及结构优化提供了参考.  相似文献   

16.
为研究平衡孔直径对离心泵叶轮进口流态的影响,在降速后的IS80-50-315型离心泵上,用平衡孔直径d分别为0,4,6,8,10 mm的同一个叶轮,对离心泵的扬程、效率和轴功率进行预测,研究泵在设计工况、不同平衡孔直径时叶轮进口处速度矢量和压力的分布情况,并监测叶轮进口处的压力脉动特性.结果表明:加大叶轮平衡孔直径,泵的扬程与效率下降、轴功率提高,且在小流量工况下泵扬程变化更为明显;随着平衡孔直径的增大,平衡孔内液体流速减小,对叶轮进口流体的冲击作用逐渐减弱,叶轮进口处压力变得均匀,在一定程度上改善了泵的抗汽蚀性能;随着平衡孔直径的增大,叶轮进口主流区的压力脉动幅值减小,在一定程度上稳定了压力脉动幅值的变化,改善了其不稳定特性;平衡孔直径增大时,叶轮进口区平均静压变化逐渐稳定.研究成果为离心泵叶轮平衡孔直径的选择提供了参考.  相似文献   

17.
为研究气液混输状态下离心泵内部流动及外特性的基本规律,以某一比转数ns=132.2的直联式单级单吸离心泵为研究对象,基于量纲一化方法,在不同含气率及转速下进行外特性试验和数值模拟研究.结果表明:量纲一化参数的压力系数和速度系数能够较为直观地反映离心泵气液两相流内部流动的基本规律;随着转速的增大,低压区在叶轮进口附近的半径逐渐增大,低速区占据流道的面积也逐渐增大,此时由于气体主要聚集在叶轮流道及蜗壳附近,容易堵塞流道,液相与叶轮能量得不到有效地交换与传递,这是导致气液混输状态下含气率大于3%时离心泵外特性曲线不再遵循相似定律的主要原因;结合试验和数值模拟结果验证了所采用的Eulerian-Eulerian非均相流模型的合理性,为泵的优化设计提供了一定理论基础.  相似文献   

18.
为研究离心泵在气液两相条件下叶轮内部流态及受力情况,选取一比转数ns=129的离心泵为研究对象,基于CFX软件提供的Eulerian-Eulerian非均相流模型对泵内部流场进行三维瞬态数值模拟,得到不同初始气相体积分数下叶轮流道内气相体积分数分布及叶片载荷等物理量变化规律,并将数值模拟结果与试验结果进行对比验证.结果表明:叶轮内气体主要集中分布在叶片吸力面区域,出口处则集中分布在流道中间区域,叶轮前盖板区域气相体积分数大于后盖板区域;当初始气相体积分数逐渐增大时,叶轮流道内流动紊乱,气液两相流动的不均匀性加剧,旋涡区域增大;随着初始气相体积分数的增大,叶片进口到靠近出口位置,叶片压力面所受压力载荷相对于吸力面减小的更快,而在出口位置附近叶片吸力面压力载荷减小的更快,叶轮径向力的不平衡性加剧,叶轮所受转矩减小.数值计算结果与试验结果在趋势上趋于一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号