共查询到18条相似文献,搜索用时 156 毫秒
1.
2.
玉米收获机低损变径脱粒滚筒设计与试验 总被引:1,自引:0,他引:1
针对华北地区玉米收获时籽粒含水率较高、籽粒直收破碎率较高的问题,设计了一种变径脱粒滚筒。滚筒前端直径渐变增大直至与脱粒分离段等径,通过提高滚筒变径段果穗容纳能力,增强果穗之间柔性接触,有效“松散”籽粒之间及籽粒-芯轴之间作用力,使果穗更易于脱粒,从而实现籽粒与芯轴的快速分离,有效提高了脱粒速度,降低了籽粒破碎率。对果穗与脱粒元件受力进行分析,研究变径段锥度对果穗受力的影响。基于动力学仿真试验,分析了果穗与脱粒元件之间的接触力以及果穗-果穗和果穗-脱粒装置之间的接触频次,结果表明,变径滚筒提高了果穗之间的接触频次,降低了脱粒元件与果穗的直接接触,即变径滚筒中果穗之间接触揉搓作用更强。以滚筒转速、凹板间隙及籽粒含水率为试验因素进行了三因素四水平正交试验,确定最优组合为籽粒含水率26%、滚筒转速350 r/min、凹板间隙50 mm,此时籽粒破碎率为4.13%、籽粒未脱净率为0.34%。在籽粒含水率为27%时与等径滚筒进行了对比脱粒试验,按籽粒的完整性将破损籽粒分为全碎籽粒、裂纹籽粒、破皮籽粒及顶部破碎籽粒,结果表明,变径滚筒的籽粒总破碎率为4.64%,比等径滚筒的总破碎率降低19.16%,破损籽粒中全碎籽粒、裂纹籽粒及破碎籽粒所占比例均明显降低;变径滚筒未脱净率为0.42%,比等径滚筒的未脱净率降低51.72%,证明变径滚筒能够有效降低籽粒破碎率及未脱净率。 相似文献
3.
联合收获机脱粒滚筒有限元模态分析与试验 总被引:1,自引:0,他引:1
针对联合收获机脱粒滚筒在工作中的振动和噪声问题,为了避免共振,利用软件ANSYS Workbench对联合收获机脱粒滚筒进行了有限元模态分析,得到了前6阶的固有频率和振型。对脱粒滚筒进行了模态实验,与有限元分析结果进行对比,其固有频率相对误差在4.6%以下,且振型一致,验证了有限元分析的准确性。模态分析结果表明:前6阶固有频率与主要振源激励频率相差较大,较好地避开了共振区;钉齿杆与幅盘的振幅较大,且两者的连接处最为薄弱,在设计和焊接时应尤为注意。该研究为联合收获机脱粒滚筒的设计与优化提供了参考。 相似文献
4.
半喂入联合收获机同轴差速脱粒滚筒设计与试验 总被引:1,自引:0,他引:1
针对半喂入联合收获机收获超级稻和难脱粒的粳稻时脱粒不净引起损失的问题,设计了半喂入同轴差速脱粒滚筒,并与单速脱粒滚筒进行了脱粒对比试验,对各种脱出物料的实测数据用Matlab软件建立了3D图像及其数学模型。结果表明:差速滚筒未脱净籽粒约0.06%,比单速滚筒降低61.25%;3D图像显示差速脱粒的各种脱出物料在筛面上分布比单速脱粒均匀。半喂入同轴差速脱粒装置集高、低转速对脱粒性能的有利作用于一体,能较好解决半喂入联合收获机收获超级稻和粳稻时脱粒不净引起的损失,并使损失率、破碎率和含杂率等性能指标都达到较优水平。 相似文献
5.
谷物联合收获机脱粒滚筒功耗模型研究 总被引:1,自引:0,他引:1
以脱粒滚筒为研究对象,对脱粒滚筒的工作过程进行分析,得知脱粒滚筒脱粒阻力矩如何形成,从而得出脱粒功率表达式;分析谷物湿度变化对脱粒阻力矩的影响,得出谷物湿度与脱粒功率之间的关系,建立了脱粒滚筒的功耗模型。随着谷物湿度增加,脱粒功率先增加后减小。 相似文献
6.
7.
传统的联合收获机在收获过程中,因为水稻长势的不同导致喂入情况有较大的浮动,工作性能不稳定、脱粒装置适应性差,工作性能难以达到最佳状态,且低适应性的脱粒装置难以应对水稻的大规模集约化种植和品种的迅猛更新带来的新挑战。针对传统脱粒装置的局限性,研制了一种齿杆单动可变直径的脱粒滚筒,使脱粒装置既能调节脱粒齿杆的伸长量来调整脱粒间隙,又可以改善水稻物料在脱粒装置的输送效果,提升联合收割机脱粒装置的工作性能。同时,加工装配样机并进行伸长量调节准确性试验,结果表明:设计的齿杆单动变直径脱粒滚筒伸长量调节准确性达到100%,且调节灵活、方便,符合设计要求。 相似文献
8.
针对目前青稞联合收获过程中秸秆含芒率高、芒杆长度高,以及现有脱粒滚筒无法对芒杆倒刺进行有效处理的现状,设计一种青稞联合收获机脱粒碎芒装置,整机主要部件包括机架、脱粒滚筒、凹板、风机、筛箱、滚筒盖及传动系统。通过选择不同脱粒元件,计算和确定其结构参数与排列形式,以增加滚筒对芒杆内表面倒刺的揉搓能力,同时在凹板处设置碎芒板条,在保证籽粒脱净率前提下,有效提高了脱粒滚筒的碎芒率。运用ABAQUS软件对整机机架振动特性进行有限元仿真,对比固有频率与外部激励频率变化趋势,保证脱粒装置作业时无共振现象发生。得出在极限工况条件下,滚筒最大变形量为1.02 mm,满足设计要求。田间性能试验表明:籽粒破碎率为0.11%、含杂率为5.27%、脱净率为87.49%、秸秆含芒率为5.86%、碎芒率为93.15%,各项指标均满足相应标准要求,秸秆中所含芒杆内表面倒刺去除效果明显,有效提高青稞秸秆饲草的食用适口性。本研究为青稞机械化联合收获、脱粒及芒杆处理提供应用实例和技术参考。 相似文献
9.
10.
半喂入联合收获机回转式栅格凹板脱分装置设计与试验 总被引:2,自引:0,他引:2
针对半喂入联合收获机在收获高产水稻时容易发生脱粒滚筒堵塞、影响作业效率等问题,设计了可沿脱粒滚筒圆弧方向循环运转的回转式栅格凹板脱粒分离装置。对被脱物质点进行了受力分析,建立了回转式凹板的动力学微分方程;在自行设计的回转式栅格凹板脱分装置试验台上进行了二次旋转组合试验,建立了脱粒滚筒转速x1、回转栅格凹板线速度x2、夹持喂入链速度x3对损失率y1、破碎率y2、含杂率y3和脱分选功耗y4等工作性能指标的回归分析模型,并进行了多目标优化计算。结果表明:动态的回转栅格凹板可有效防止脱粒滚筒堵塞;最佳工作参数组合为x1=550 r/min,x2=1 m/s,x3=1.2 m/s,对应y1=2.14%、y2=0.2%、y3=0.6%。田间对比试验表明:具有回转式栅格凹板脱分装置的试验机收获高产稻时可全幅快速顺畅作业,工作效率比固定式栅格凹板的对比机提高30%以上。经法定机构检测,各项性能指标符合国家标准规定。 相似文献
11.
油菜收获机割台螺旋输送器间隙自适应调节机构研究 总被引:2,自引:0,他引:2
针对油菜联合收获过程中由于喂入量波动导致割台螺旋输送器堵塞的问题,设计了一种割台螺旋输送器间隙自适应调节机构,实现喂入量变化时实时改变滑块位移以自动调节输送器与底板之间的间隙。输送器动力学与运动学分析确定了调节机构预紧弹簧最大预紧力和调节位移分别为366 N和50 mm。运用扭矩传感器和高速摄像技术分别开展输送器扭矩和调节位移的性能试验,当弹簧预紧力和刚度分别为293 N和12.65 N/mm时,输送器扭矩为8.267 N·m,减少了40.7%,调节位移为10.2 mm,调节机构性能较优。调节机构对输送器性能影响试验结果表明:增设间隙自适应调节机构可明显降低扭矩并增加最大喂入量,螺旋输送器转速为150 r/min时扭矩减小了23%;转速为200 r/min时,最大喂入量增加至3.5 kg/s,提高了16.7%。喂入量在不大于3.0 kg/s范围内波动时,试验组最大扭矩小于对照组,说明调节机构可较好适应喂入量的波动。田间试验表明间隙自适应调节机构可提高输送器对喂入量的适应性,避免割台堵塞,后续的脱粒装置、清选装置等工作部件未发生堵塞,油菜联合收获机可正常工作。 相似文献
12.
油菜联合收获机滚筒筛式复清装置设计与试验 总被引:1,自引:0,他引:1
针对油菜联合收获机脱粒分离作业后脱出物组分杂,籽粒细小不易分离,导致清选作业清洁率低、人工复清劳动强度大等问题,设计了一种挂接在粮箱上的模块化滚筒筛式复清装置。基于运动学与动力学分析了物料提升螺旋输送器和筛分装置的结构参数与运行参数范围;以滚筒筛式复清装置的损失率、清洁率及筛分效率为评价指标,以滚筒筛转速、筛网内助流螺旋叶片螺距和筛孔直径为影响因素,基于EDEM开展了三因素三水平正交试验,确定了最佳参数组合,并利用收获关键部件试验台开展了验证试验。仿真结果表明:当喂入量为0.6kg/s时,滚筒筛式复清装置的较优参数组合为筛孔直径5mm、滚筒筛转速105r/min、筛网内助流螺旋叶片螺距250mm,此时滚筒筛式复清装置损失率为0.92%、清洁率为98.96%、筛分效率为95.12%。台架验证试验表明,带有滚筒筛式复清装置的清选系统工作顺畅,在最佳参数组合条件下,滚筒筛式复清装置的损失率为0.96%、清洁率为98.67%、筛分效率为95.36%,对比未增加滚筒筛式复清装置前清洁率提升了4.38个百分点。研究可为油菜联合收获机清选装置结构改进和优化提供参考。 相似文献
13.
14.
为了解决当前小型联合收割机脱粒系统性能检测系统不完善,特别是西南丘陵山区小型联合收割机的性能在田间又不易直接检测,数据获取困难,数据精度达不到要求,可变参数无法实时连续调节等问题,设计了一种小型联合收割机脱粒装置性能检测平台。其采用模块化机械结构,各工作部件调整组合方便;检测系统可以实时对脱粒装置的转速、扭矩及功率等数据进行采集处理,且可以对脱粒后的谷物和稻草进行定量分析,得出谷物夹带损失率率和含杂率。该平台不但可检测脱粒系统工作参数是否可以达到既定要求,而且可采取喂入量连续可调的方式,用来分析出这个脱粒系统的最佳喂入量。该研究为今后小型联合收割机机脱粒装置的设计提供了可靠的数据支撑。 相似文献
15.
为了适应丘陵山区作业环境,满足超级杂交水稻收获要求,设计了4LZ-21Z型同轴双滚筒联合收获机。阐述了联合收获机整体设计方案,设计了同轴双速脱粒分离装置与履带自走装置,可一次完成分禾、扶禾、切割、脱粒、清选、装袋等工序。以低/高速脱粒滚筒线速度、回转式凹板筛速度和脱粒间隙为试验因素,籽粒损失率、破碎率和含杂率为性能指标,采用三因素五水平正交旋转组合设计试验,运用Design-Expert软件进行多目标变量优化,建立了各试验因素与性能指标数学模型,并进行多目标参数优化。根据参数优化结果,开展了样机田间试验。田间试验表明,该样机作业性能稳定,籽粒损失率、破碎率和含杂率分别为1.34%、0.20%和0.40%,各项性能指标均优于检测标准要求。 相似文献
16.
玉米联合收获机纹杆式脱粒元件设计与试验 总被引:2,自引:0,他引:2
我国华北地区玉米收获时籽粒含水率较高,采用钉齿式及杆齿式脱粒元件进行籽粒直收时,籽粒破碎率较高,为降低脱粒过程中籽粒破碎率,设计了一种纹杆式脱粒元件,分析其前倾角变化对果穗受力的影响规律,以籽粒破碎时压缩量为依据,对纹杆块顶端弧面形状进行设计。基于EDEM研究纹杆元件顶端参数对果穗受力的影响,采用拟水平法设计四因素四水平正交试验,试验结果表明:较优纹杆参数组合为前倾角75°、凸棱倾角25°、凸棱宽度6 mm、凸棱高度10 mm;通过台架试验探究滚筒转速、凹板间隙等工作参数对纹杆式滚筒脱粒效果的影响规律,当籽粒含水率为28.5%时,最优滚筒转速为300 r/min,凹板间隙为50 mm,此时籽粒破碎率为5.34%。在最优工作参数下,对比不同脱粒元件脱粒效果,发现籽粒破碎率分别由杆齿式元件的9.91%、钉齿式元件的7.83%下降至纹杆式脱粒元件的5.34%,证明所设计的纹杆式脱粒元件能够有效降低脱粒过程中籽粒破碎率。 相似文献
17.
油菜联合收获机集成式纵轴流脱离装置设计与试验 总被引:4,自引:0,他引:4
针对油菜联合收获机链耙式输送器结构复杂、输送路程长、存在堵塞的问题,设计了一种集成式纵轴流脱粒分离装置,将强制喂入装置与纵轴流脱粒分离装置合二为一,二者呈T字形垂直排布,取代传统的链耙式输送器,依靠强制喂入装置和纵轴流脱粒分离装置实现油菜输送、抓取、脱粒分离功能。依据集成式纵轴流脱粒分离装置的工作过程,确定了强制喂入轮和纵轴流脱粒滚筒直径和转速等主要参数。试验表明,喂入量为2.0 kg/s,强制喂入轮转速在300~450 r/min时,该装置脱粒油菜的夹带损失率低于1.31%;强制喂入轮转速为400 r/min、喂入量在1.0~2.5 kg/s时,夹带损失率低于1.18%,符合油菜脱粒分离装置的设计指标。田间试验表明集成式纵轴流脱粒分离装置可适应油菜联合收获机的作业要求,实现物料由割台至脱粒分离装置的均匀连续输送和脱粒分离功能。 相似文献
18.
油菜联合收获机切抛组合式纵轴流脱离装置设计与试验 总被引:4,自引:0,他引:4
针对传统油菜联合收获机链耙式输送器输送距离长、且易引起油菜高粗茎秆堵塞的问题,设计了一种切抛组合式纵轴流脱离装置,实现油菜的强制喂入、切断抛送、脱粒分离功能于一体,整机关键部件全部采用液压驱动,可保证其无级调速和运转平稳。通过对茎秆的运动学与动力学分析,确定了喂入辊、切碎滚筒和脱粒滚筒的结构参数与工作参数,以夹带损失率和功耗等为评价指标,开展了切碎滚筒转速、脱粒滚筒转速和脱粒间隙的正交试验。正交试验结果表明:较优参数组合为切碎滚筒转速450 r/min、脱粒滚筒转速450 r/min、脱粒间隙30 mm,此时夹带损失率为0. 415%,脱出物短茎秆质量分数为10. 43%,切碎滚筒和脱粒滚筒总功耗为4. 16 kW,排草口茎秆平均长度134. 8 mm,对应的旋风分离清选系统籽粒总损失率为6. 13%、清洁率为91. 97%。田间试验表明,切抛组合式纵轴流脱离装置能实现物料由割台至脱离装置的均匀连续输送和脱粒分离功能,可满足油菜联合收获机的作业要求。 相似文献