首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
温室温度系统作为典型的混杂系统,其输入包括离散的设备控制量以及可测不可控的多个室外环境扰动量。本文针对温室温度混杂系统,建立切换系统模型,基于此模型设计多输入预测控制。首先分别在4种离散状态(保温模式、自然通风模式、强制通风模式、湿帘-风机模式)下确定模型的主相关输入,采用带遗忘因子的递推最小二乘建立子模型。然后设计预测控制器,利用双周期积温法规划预测控制设定值。求解多输入预测控制控制量问题为NP-hard问题,采用最优化剪枝法优化搜索。最后在试验温室应用控制算法,实验结果表明,多输入预测控制算法可以有效调控温室内温度,并且由于积温理论动态规划预测控制设定值,可减少设备的切换次数,降低能耗。  相似文献   

2.
针对周年生产的温室控温系统在一年四季需要不断更换不同控温方案的问题,设计了一种基于多模糊控制器的切换控制方法.该方法通过对系统整体规划并制定一系列针对不同环境状态的不同控温方式的切换规则,结合对各个设备的模糊控制,实现对整个温室系统温度的实时精准控制.仿真实验结果表明,该方法非常适用于周年生产的温室控温系统,在运行过程中整个系统表现出良好的控制品质,实现了对温室系统经济、有效和节能的控温目的.  相似文献   

3.
基于微信平台的温室环境监测与温度预测系统   总被引:1,自引:0,他引:1  
温室数据采集系统多采用数据采集端通过上位机管理数据或上传至数据服务器的方式进行温室环境监测和管理,该方式网络结构相对复杂,功耗较大。为解决上述问题,本文采用物联网、云服务、微信平台结合的方式,设计开发了基于微信平台的温室环境监测与温度预测系统。系统采用数据采集端直接通过WiFi/GPRS联接互联网访问云服务器的方式进行数据交互,手机移动端通过微信公众号访问云服务器获取数据服务。温度预测模型采用差分时间序列模型,解决温度预测过程中季节周期性的影响。通过对系统数据分析证明:系统有效实现了数据采集端的轻量化与可移动性,不仅能够对数据进行有效管理,且温度监测相对误差低于4.96%,温度预测相对误差低于3%,预测结果具有较高的精度,能够满足日常生产的需要。  相似文献   

4.
魏晓艳 《农业工程》2021,11(9):30-33
以单片机作为主控制器,设计了一套大棚温室温度测控系统。分析了设计目标和设计需求,并制定相应的设计方案;通过对硬件模块和软件子程序的设计,建立了系统所需的构建模块;结合硬件与软件进行了准确性测试。测试结果表明,系统能够实时显示温度数据,利用键盘可实现对温度的控制,达到了预期的设计目的。   相似文献   

5.
温室温度智能测控系统的设计   总被引:1,自引:0,他引:1  
介绍了温室温度智能测控系统的组成及工作原理,对其硬件构成和软件进行了设计,该系统能自动巡回检测温室的温度参数,并可根据上述参数实现温度自动调节,且具有报警等功能.  相似文献   

6.
温室温度系统具有强非线性特性,通常会导致模型预测控制算法操作复杂,不适宜实际生产应用。针对此问题,提出了基于输入输出精确线性化的温度预测控制算法。根据能量平衡定律,构建了温室温度系统机理模型,将其转换为仿射非线性系统;利用微分几何理论,获得非线性状态反馈控制律,实现了原系统输入输出的精确线性化;在此线性化系统的基础上,设计了预测控制器,使温度跟踪误差与加热损耗的加权和达到最小。仿真结果表明:精确反馈线性化预测控制系统能够综合权衡控制精度与运行能耗,调控效果良好。  相似文献   

7.
温室地下蓄热系统温度的分布试验   总被引:1,自引:0,他引:1  
设计了温室地下蓄热系统,并测试了系统冬季白昼蓄热与夜间加温时温室内空气温度、地坪温度。结果表明,系统蓄热时,温室内纵向最大气温差为1.9℃,地坪温度沿温室横向、纵向变化幅度小,且随着蓄热过程的进行,气温、地温趋于一致;加温时,温室内纵向最大气温差为0.8℃,地坪横向、纵向最大温差分别为0.6℃、1.9℃,温度分布均匀。  相似文献   

8.
对温室蔬菜(茄子)的光合作用进行测定,建立茄子光合作用模型。基于作物生长量最大的层次对温室环境因子温度进行优化控制。利用数学分析方法求出理论上的最优解,考虑不同季节、不同天气条件、不同光照下如何对温室内温度进行优化控制。  相似文献   

9.
基于CFD非稳态模型的温室温度预测控制   总被引:6,自引:0,他引:6  
以Venlo温室内温度场为研究对象,提出了一种基于计算流体动力学(CFD)非稳态模拟模型的预测控制方法。CFD模型作为虚拟温室环境,将其非稳态模拟产生的时间序列数据代替真实的物理试验数据,结合系统辨识理论将CFD模型转换成基于数据的系统控制模型,实现基于CFD的温室温度预测控制。仿真结果表明,基于CFD的预测控制实现温室温度控制的平均偏差为2.65℃,标准偏差为3.27℃,可将室内温度平稳有效地控制在作物生长允许的温度范围内。系统辨识、控制算法和CFD技术的结合,提高了控制器设计的效率,丰富了温室控制系统的设计方法。  相似文献   

10.
温室技术是我国实现农业现代化过程的重要环节,温度是温室控制中的重要环境参数。传统的单片机控制已经不能满足现代温室高精度、快速采集及响应的要求。建立了基于32位ARM架构的微处理器和uClinux嵌入式操作系统的试验平台,分析了软硬件的构成,并通过Rtl8019AS网卡接入Internet,具有实时性、多任务、多线程以及友好的人机界面的功能。结合实际温室进行了一系列试验,对采集数据进行了分析,提出了一些可扩展型、创新型的方案,这对于温室的智能化控制是非常有实际意义的。  相似文献   

11.
以冬季日光温室为研究对象.综合考虑温度和湿度因子对口光温室环境的影响,应用模糊控制与PID控制相结合的方法实现对北方日光温室冬季温度的控制,并利用MATLAB命令方式和Fuzzy Logic Toolbox实现对该控制系统的仿真.仿真实验结果证明:本系统对于日光温室温度的控制效果比较理想,在外界扰动较大的情况下能够快速达到设定的温度值,抗干扰能力强,反映速度快,有较强的鲁棒性.  相似文献   

12.
为了适应作物生长需求,需要对大棚温度进行精确控制.首先,建立包含多种环境因素的大棚温度模型;其次,采用模糊PID控制方法,建立了高精度的温度控制方法.综合考虑温室外环境温度、风速、太阳照射强度和室内湿度等因素,采用ARX方法建立温度模型.采用模糊PID控制方法,以温度变化量及其变化率为输入,PID调节量为系统输出,对温...  相似文献   

13.
目前对温室环境控制很难建立一个精确的数学模型,而且温室需要控制的环境因子有很多,采用传统的控制方法很难达到理想的控制效果。本文介绍了以温度作为优先控制的环境因子,采用模糊逻辑控制方法,对温室温度进行调控。  相似文献   

14.
以AT89S51单片机为控制核心,以数字温度传感器DS18B20为测温元件,采集温室内的温度信息。通过对当前温室环境的现状进行分析,对温室温度参数进行调节,以达到栽培作物生长发育的需要,为作物的生长提供最适宜的温度环境,大幅提高作物的产量和质量。  相似文献   

15.
提出了基于GPRS和GPS的嵌入式蔬菜大棚温度控制系统的硬件结构以及软件设计方法。硬件采用ARM7内核嵌入式处理器LPC2103,软件采用uC/OS-II操作系统。使用AD590温度传感器检测蔬菜大棚内的温度,设计了GPS,GPRS,温度检测以及控制硬件电路。使用uC/OS-II操作系统进行系统软件多任务管理,设计了4个任务实现系统初始化、GPS数据获取、GPRS发送信息、温度检测以及控制功能,给出了每个任务的实现方法。制作样机并进行实验,实现了系统要求的各项功能。  相似文献   

16.
以AT89S51单片机为控制核心,以数字温度传感器DS18B20为测温元件,采集温室内的温度信息。通过对当前温室环境的现状进行分析,对温室温度参数进行调节,以达到栽培作物生长发育的需要,为作物的生长提供最适宜的温度环境,大幅提高作物的产量和质量。  相似文献   

17.
在对国内外温室智能控制系统进行调查分析的基础上,针对高档温室自动控制的需要,探索性地将温室作物生长模型引入到温室智能控制系统结构中,开发了基于作物生长模型的温室智能控制系统.该系统基于温室作物生长模型理论,对温室内外环境因子进行实时监测和智能化决策调节,为温室内作物生长创造最优化的生长条件.该系统功能强大,软硬件全中文界面,操作简便,运行可靠.  相似文献   

18.
介绍了温室环境的特点,根据其特点提出温室温度控制要求,以温度作为优先控制的环境因子进而确定了以PLC为核心的温室温度控制系统.对温室温湿度进行实时控制。重点设计了温室温度控制主程序及功能指令的应用技巧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号