首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用作物系数法和PM模型估算南京地区玉米田蒸发蒸腾量   总被引:2,自引:0,他引:2  
蒸发蒸腾量(ET)是农田水平衡中的重要环节,ET的准确估算有助于提高农田水分管理水平。在测定农田小气候、土壤蒸发和玉米生长旺季液流量基础上,比较了单作物系数法(Kc法)、双作物系数法(Kcb法)、不同冠层阻力计算的Penman-Monteith模型(PM1和PM2法)估算南京地区玉米田ET的适用性,并对玉米整个生育期ET变化及其影响因素进行分析。结果表明以液流法和土壤蒸发测定的总ET为基准,PM1方法估算的夏玉米ET误差最小,与实际测定ET的决定系数(R2)、平均绝对误差(MAE)和一致性指数(d)分别为0.52、0.8 mm/d和0.48。以PM1模型估算的夏玉米全生育期ET为310mm,日均ET为3.16mm/d,最大值出现在拔节期和抽穗期,整体变化呈单峰型。ET与气象因素响应顺序为净辐射饱和水汽压温度风速。本研究可为优化玉米田水资源管理和提高水资源有效利用提供参考。  相似文献   

2.
利用大型称重式蒸渗仪测定了冬小麦不同生育期的农田蒸发蒸腾量,分析了冬小麦的蒸发蒸腾变化规律,探讨了参考作物蒸发蒸腾量(ET0)、土壤含水率与作物蒸发蒸腾量(ET)之间的关系。结果表明,ET0和蒸渗仪实测的ET生育期内变化趋势基本一致;冬小麦ET受0~60cm土层土壤含水率的影响,尤其是0~40cm土层土壤含水率对作物ET影响显著,80cm以下土层土壤含水率基本对作物ET无明显影响。  相似文献   

3.
参考作物蒸发蒸腾量(Reference Evapotranspiration,ET0)是估算作物需水量、制定灌溉制度、提高用水效率,实现农业节水的重要参数。针对传统Penman-Monteith(P-M)公式计算作物蒸发蒸腾量需要参数多,计算复杂等问题,提出了一种基于支持分类特征的梯度提升决策树(CatBoost)算法估算温室日参考作物蒸发蒸腾量。以温室修正型Penman-Monteith公式计算的ET0作为标准值,通过Pearson’s方法对输入参数与ET0之间的相关性进行分析,组合不同输入特征向量。当输入参数组合为3参数,即平均室内温度、平均相对湿度、累积太阳辐射时,CatBoost性能最优,测试集估算精度MAE为0.220 mm/d,RMSE为0.310 mm/d。进一步对比了6种其他机器学习模型(XGBoost、AdaBoost、随机森林、决策树、KNN、SVM)的估算精度,结果表明CatBoost模型具有最佳的估算精度和稳定性,能够较好地模拟参考作物蒸发蒸腾量。构建的日参考作物蒸发蒸腾量估算模型为水肥精准化管理、灌溉控制系统研发提供了一种新的思路。  相似文献   

4.
关中地区夏玉米和冬小麦不同蒸发蒸腾量估算方法的研究   总被引:1,自引:0,他引:1  
参考作物蒸发蒸腾量(ET0)是精准估算作物需水量、提高农田水分利用效率的重要依据。基于2013-2017年的田间试验数据以及相关气象观测资料,采用5种计算ET0的方法计算关中地区日平均ET0和年平均ET0,采用Origin对ET0及环境因子进行相关分析,使用标准误差估计(SSE)和决定系数r2,在FAO-56 PM和其他4种简单替代方法之间进行比较。结果表明:对ET0和气象因子的标准分数的分析表明,ET测量值和5种方法的估计值均高度依赖于太阳辐射和温度,但与相对湿度和风速的关系较小。对5种ET0估算方法,即:FAO-56 Penman-Monteith(FAO-56 PM)、Penman-Monteith(PM)、Priestly-Taylor(PT)、Mankink(MK)和Hargreaves(HG)进行了评估。统计分析表明PM可代替FAO-56 PM方法来预测该地区的ET_0值。这与作物蒸发蒸腾量(ETC)的准确估计直接相关,这也取决于作物生理特征和发育阶段、天气参数、环境条件和管理实践。  相似文献   

5.
利用作物蒸腾和土壤蒸发之间的定量分配占比确定最优施肥量,是指导合理灌溉、提高水肥利用效率的重要研究内容。该研究测定了夏玉米蒸腾量、土壤蒸发量、作物生长参数和产量,并用修正双作物系数法估算全生育期夏玉米蒸发蒸腾量,分析了雨养条件下,不同施肥量对夏玉米植株蒸腾(T_c)和土壤蒸发(E)及产量的影响。结果表明:夏玉米生长初期,施肥量对T_c的影响不明显,E对蒸散量(ET_c)的贡献大于T_c;生长中期,施肥量越大,T_c相对较大,0肥(N1)低肥(N2)中肥(N3)高肥(N4),T_c对夏玉米蒸散量ET_c的贡献大于E;生长后期,N2处理T_c最高,N4处理最低。不同施肥量下,T_c、E整体呈现下降趋势,T_c、E对ET_c相互影响。不同施肥量夏玉米产量N3N2N4N1,N3处理比N1处理产量高16.9%、N3处理比N4处理产量高9.6%。施肥量过多或太少,都会降低夏玉米产量。适当施肥可以提高T_c在ET_c中的所占比例(N3最高,T_c/ET_c=67.53%),降低E的消耗,从而使水分消耗向增加作物产量的方向分配。  相似文献   

6.
为了研究不同参考作物蒸发蒸腾量ET0估算方法在江苏地区的适用性,收集了江苏省徐州市、高邮市和昆山市1957年1月至2019年12月的气象数据,采用12种不同模型估算了各站点的ET0,其中模型Priestly-Taylor,Hansen,Jensen-Haise,Makkink是基于辐射数据的模型;MC-Cloud,1985 Hargreaves,Thornthwaite是基于温度数据的;Copais,Valiantzas 1和Valiantzas 2是综合法模型;XGBoost和SVM是机器学习模型.12种ET0的估算模型计算值分别与Penman-Monteith模型(PM)计算值进行比较,结果表明:各站点的综合评价指数GPI最高的为机器学习模型中的SVM模型;在输入参数相同的情况下,机器学习模型模拟精度优于综合法和温度法以及辐射法中的Pristley-Taylor和Makkink模型;机器学习模型随着输入参数减少,模拟精度依次降低.研究结果可以为江苏地区气象数据不完善时估算ET0提供科学依据.  相似文献   

7.
为提高旱区作物蒸发蒸腾量估算精度,以石羊河流域春玉米为研究对象,分析灌水量对FAO-56估算作物蒸发蒸腾量精度的影响,并对估算误差进行讨论,提出使用部分根区含水量平均值用于土壤水分胁迫系数计算.结果表明:FAO-56对不同灌水处理下作物蒸发蒸腾量的估算精度存在较大差异,可较精确地估算低灌水处理下作物蒸发蒸腾量;随着灌水量增大,其估算精度有所降低,对高灌水处理下作物蒸发蒸腾量的估算误差达-14.13%;根区上部土层含水量与土壤水分胁迫状况关系紧密,以缓变层及以上土层含水量平均值代替整个根区含水量平均值用于土壤水分胁迫系数计算,可有效改善高灌水处理下旱区作物蒸发蒸腾量计算精度,亦可较为精确地估算低灌水处理下作物蒸发蒸腾量.  相似文献   

8.
蒸发蒸腾量时间序列的混沌特征分析   总被引:1,自引:0,他引:1  
利用成都1951-2000年的气象资料和地理参数,用Penman-Monteith公式计算蒸发蒸腾量(ET0)。根据混沌理论,采用Welch法和小数据量法识别ET0的混沌特征,根据G-P关联维和C-C方法得出主要的混沌特征指标,并利用RBF神经网络和Volterra级数进行一步预测。研究表明:ET0序列存在一定的混沌特征,最小嵌入维数m=6时对应的吸引子维数D=2.025,最大李雅诺夫指数大于0;利用RBF神经网络和Volterra级数自适应方法对ET0进行预测一步预时,Volterra级数自适应一步预测结果误差较小,预测精度较高。因此,在实际中可采用Volterra级数自适应模型进行ET0一步预测。  相似文献   

9.
【目的】蒸发蒸腾量(ET)是农业生产的主要参数,ET的准确估算对农田精准用水管理和区域水资源优化配置具有重要意义。【方法】利用2012—2013年夏玉米作物指数与气象因子,采用基于参考作物蒸发蒸腾量(ET0)经验模型(Schendel、Hargreaves-M4(H-M4))的单作物系数法、单源模型(Priestley-Taylor(P-T))和双源模型(Shuttleworth-Wallace、Two-Patch)对作物蒸发蒸腾量进行模拟,并对比分析各估算模型模拟情况。【结果】基于不同生育期实测和平衡蒸发蒸腾量均值的比值修正P-T模型经验系数?,P-T修正模型对夏玉米全生育期ET模拟值与大型称质量式蒸渗仪实测值拟合的平均绝对误差(MAE)、决定系数(R2)、平均相对误差(MRE)、相对均方根误差(Relative root mean-squared error,RRMSE)和整体评价指标(GPI)排名分别为0.977 5 mm/d、0.5689、0.843 4、0.450 4和1,苗期分别为0.959 2 mm/d、0.332 0、0.478 4、0.481 1和3,拔节抽雄期分别为1.038 8 mm/d、0.507 8、0.551 7、0.429 0和1,成熟期分别为0.548 1 mm/d、0.774 6、0.915 8、0.423 9、0.692 1和1;H-M4模型对灌浆期ET模拟MAE、R2、MRE、RRMSE和GPI排名分别为1.344 3 mm/d、0.727 9、2.298 3、0.491 0和1。模拟结果均达到极显著(P<0.01,P代表显著性水平)。【结论】P-T和基于单作物系数法的H-M4均具有输入较少参数获取较精确ET估算值的优势,因此P-T可作为全生育期及苗期、拔节抽雄期和成熟期蒸发蒸腾量最优模拟模型,H-M4可作为灌浆期蒸发蒸腾量最优模拟模型。  相似文献   

10.
以浙江低山丘陵区永康灌溉试验站为背景,运用Penman-Monteith公式计算分析了永康长系列参考作物腾发量ET0及其变化规律,建立了ET0实时预报模型,并分析了参数A0取值方法对预报精度的影响。采用双作物系数法确定了滴灌葡萄逐日作物系数,建立了滴灌葡萄蒸发蒸腾量实时预报模型。运用实测的土壤含水率资料,根据水量平衡原理分析计算葡萄实际蒸发蒸腾量,与模型的预报值比较表明所建立的模型及其参数合理。  相似文献   

11.
农田蒸散(ETc)是农业系统能量平衡和水分平衡的关键要素,砂石覆盖条件下ETc的估算对于评价砂石覆盖对农田作物的影响非常重要。为准确估算砂石覆盖条件下冬小麦ETc,在陕西杨凌建立了遮雨棚下的蒸渗仪动态观测系统。利用FAO-56的Penman-Monteith(PM)模型和单、双作物系数法对冬小麦ETc进行估算,并基于两年度不同砂石覆盖量下冬小麦实测ETc数据,对单、双作物系数法进行改进和修正,得到适用于砂石覆盖条件下单、双作物系数与砂石覆盖量的关系。结果表明:(1)冬小麦不同生长阶段的单作物系数与砂石覆盖量具有很好的线性关系,进一步结合估算的参考作物腾发量(ET0)计算,能很好地模拟两年度不同砂石覆盖量下的冬小麦ETc。(2)基于冬小麦实测ETc对双作物系数进行修正,可得到其修正系数A与砂石覆盖量之间的线性关系,进一步结合ET0可准确估算两年度不同砂石覆盖量下的冬小麦各生长阶段ETc。(3)不同砂石覆盖量下,双作物系数法比单作物系数法和PM模型估算冬小麦ETc的精度更高。总体上,单、双作物系数法在估算砂石覆盖条件下的冬小麦ETc中仍有一定的适用性,但需经实测数据进行修正。  相似文献   

12.
基于安徽省新马桥农水综合试验站内有底测坑玉米受旱胁迫专项试验数据,研究分析了干旱胁迫对玉米植株生长发育的影响及其响应规律。结果表明,干旱会影响玉米光合作用的各项指标,而光合性能的变化会影响玉米株高和叶面积的生长发育;玉米营养生长中前期,作物处于快速生长期,对水分胁迫的适应机能更强,适度轻微的受旱胁迫解除后玉米可迅速恢复正常生长,其后的生长发育反而会优于未受旱作物;同等受旱胁迫程度下,玉米营养生长后期及生殖生长阶段对水分亏缺的响应更为敏感,受旱更容易造成玉米植株永久损伤并导致减产。为提高玉米全生育期内的水分利用率实现高效节水并保障稳产,认为玉米营养生长中前期可适度缺水实施非充分灌溉,而营养生长后期及生殖生长阶段则需实施充分灌溉。  相似文献   

13.
间作模式下玉米干旱胁迫响应研究   总被引:1,自引:0,他引:1  
【目的】为了在干旱地区建立玉米大豆间作模式的节水灌溉制度,在大型防雨棚中针对玉米大豆间作模式下的玉米生长情况进行干旱胁迫研究。【方法】设置3个土壤相对含水率,进行玉米和大豆间作种植试验,通过分析玉米叶片叶绿素量、生长特性、产量等因素,研究了不同生育时期干旱胁迫对玉米生长的主要影响以及玉米和大豆之间的水分竞争情况。【结果】前期适当的干旱使玉米的株高和茎粗分别增加了6.24%、7.83%,对玉米叶绿素量积累也是有利的;在玉米生长旺盛时期,干旱导致玉米产量下降,适当干旱区域水分利用效率最大为1.39%。【结论】玉米在拔节—灌浆期对水分最敏感,在此阶段玉米和大豆对水分的竞争模式也最为复杂,在出苗中后期,适当干旱有利于玉米后期发育。  相似文献   

14.
基于双作物系数法的新疆覆膜滴灌夏玉米蒸散量估算   总被引:1,自引:0,他引:1  
为评估双作物系数法计算干旱区部分覆膜滴灌条件下夏玉米蒸散量的可靠性,于2016—2017年在新疆阿克苏地区开展了夏玉米蒸散量测坑试验研究,试验根据定灌水周期(W1、W2、W3)和变灌水周期(W4、W5)共设置5个处理,并分别采用稳定碳同位素法和水量平衡法,对双作物系数模型计算的夏玉米蒸腾量和蒸散量进行了验证。结果表明,双作物系数法计算的蒸散量与水量平衡法测定的蒸散量呈现出较好的相关性,全生育期蒸散量模拟值与实测值的均方根误差在10mm左右。双作物系数法计算的蒸腾量与稳定碳同位素法测得的耗水量亦呈现出较好相关性,模拟值与实测值的均方根误差在20mm左右。通过回归系数(b)、一致性指数(d)及均方根误差〖JP3〗(RMSE)的分析,认为双作物系数法可以估算并区分局部覆膜滴灌条件下干旱区夏玉米蒸散量,且2016年和2017年夏玉米全生育期内估算土壤蒸发量分别占蒸散量的21.33%和23.97%,作物蒸腾量分别占蒸散量的78.67%和76.03%。  相似文献   

15.
外源谷胱甘肽对干旱胁迫下玉米幼苗叶片生理特性的影响   总被引:3,自引:0,他引:3  
采用溶液培养的方法,研究了外源谷胱甘肽(GSH)对干旱胁迫下玉米幼苗叶片生理特性的影响。结果表明,干旱胁迫显著提高了叶片细胞质膜透性、MDA、SOD活性、APX活性、GSH、AsA、可溶性糖、脯氨酸和可溶性蛋白,显著降低了POD活性、CAT活性、叶绿素、类胡萝卜素、光合速率和单株生物量。外源GSH处理则可以显著提高干旱胁迫下叶片POD活性、SOD活性、APX活性、GSH、可溶性糖、脯氨酸、叶绿素、类胡萝卜素、光合速率及单株生物量,并显著降低了细胞质膜透性和MDA。上述研究结果说明,干旱胁迫对玉米造成了氧化胁迫和渗透胁迫,外源GSH处理则可以通过增强抗氧化酶活性、提高抗氧化物质和渗透调节物质而缓解干旱造成的伤害。  相似文献   

16.
作物系数-参考作物蒸发蒸腾量法是作物需水量计算最普遍采用的方法。作物系数作为该方法的重要参数,它的确定已成为作物需水量研究的关键问题。依据2005-2007年3年田间试验资料,利用Penman-Monteith公式计算了关中地区夏大豆全生育期间参考作物蒸散量,并利用农田水量平衡方程及土壤水分胁迫系数计算了作物实际蒸发蒸腾量,由此计算了大豆各生育阶段的作物系数,并分析了大豆作物系数变化规律。结果表明:关中地区大豆全生育期间参考作物蒸散量平均为524.6 mm;大豆作物系数全生育期平均为0.82,在开花~结荚阶段最大,平均为1.22,其次为结荚~成熟阶段,平均为1.05,播种~幼苗最小为0.26;在关中气候背景下,大豆作物系数与大于10℃积温具有较好的二次多项式关系。  相似文献   

17.
基于遗传程序设计的作物干旱程度评估模型   总被引:1,自引:0,他引:1  
基于遗传程序拟合非线性函数的思想,建立了量化计算作物干旱程度的遗传程序模型.该方法通过演化计算自动寻找最优的模型结构,不但可以准确地反映出干旱对作物造成的产量损失,而且避免了预先建立具体数学表达式及求解参数的不便.实例表明:遗传程序设计的作物干旱程度量化模型,具有较大的灵活性和智能性,拟合精度高,可为农业干旱风险评估提供科学的依据和坚实的基础.  相似文献   

18.
依据1999—2003年五年田间试验资料,利用Penman-Montheith公式计算陕西关中地区夏玉米全生育期内参考作物蒸发蒸腾量,并利用大型称重式蒸渗仪监测夏玉米全生育期内作物实际蒸发蒸腾量,由此计算了夏玉米各生育阶段的作物系数,并分析了作物系数变化规律。结果表明:在陕西关中地区的气象条件下,夏玉米的参考作物蒸发蒸...  相似文献   

19.
基于遥感技术估算作物蒸散发(Evapotranspiration,ET)对农业用水效率评价和精量灌溉决策具有重要意义。结合Sentinel-2数据和农田连续地面观测资料,利用混合双源蒸散发模型(Hybrid dual-source scheme and trapezoid framework-based evapotranspiration model,HTEM)对宁夏回族自治区中卫市2019年两个试验田玉米主要生育期(5—8月)的蒸散发量进行估算,并用水量平衡法对遥感估算结果进行验证和评价。结果表明:Sentinel-2数据具有高时空分辨率,能够与研究区复杂的种植地块相匹配,减少了混合像元的数量;遥感反演参数与地面观测数据拟合度较高,研究区2019年遥感反演的玉米田净辐射量均方根误差为36.256 W/m2。利用HTEM模型估算可得,主要生育期内研究区两个玉米试验田的日均实际蒸散发量分别为4.269 mm/d和4.339 mm/d,实际蒸散发总量分别为525.114 mm和533.690 mm,其中植被蒸腾量分别为363.483 mm和358.196 mm,生育初期主要以土壤蒸发形式消耗水分,随着作物的生长,在生育中后期主要以植被蒸腾的形式消耗水分。ET遥感反演结果与水量平衡结果之间差别不显著,两个观测点绝对误差分别为13.533 mm和7.774 mm。因此,结合地面连续观测系统和Sentinel-2数据估算研究区玉米生育阶段蒸散发量具有较高的精度,可为作物耗水规律研究及区域农业水管理提供技术支撑。  相似文献   

20.
大田玉米作物系数无人机多光谱遥感估算方法   总被引:5,自引:0,他引:5  
作物系数K_c快速获取是大田作物蒸散量(Evapotranspiration,ET)估算的关键,为研究无人机多光谱遥感估算玉米作物系数的可行性和适用性,以2017年内蒙古达拉特旗昭君镇实验站大田玉米、土壤、气象等数据为基础,采用经气象因子和作物覆盖度校正后的双作物系数法计算不同生长时期与不同水分胁迫玉米的作物系数,并使用自主研发的无人机多光谱系统航拍玉米的冠层多光谱(蓝、绿、红、红边、近红外,475~840 nm)影像,研究了不同生长时期(快速生长期、生长中期和生长后期)玉米的6种常用植被指数(Vegetation indices,VIs):归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、比值植被指数(SR)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),与作物系数K_c的关系模型及水分胁迫对其的影响。结果表明:玉米生长时期和水分胁迫是影响玉米VIs-K_c模型相关性的两个重要因素。不同生长时期玉米植被指数和K_c相关性不同:充分灌溉情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.731 2~0.940 1,p0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.276 5~0.373 2,p0.05,n=40)不同;水分胁迫情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.0002~0.0830,p0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.366 2~0.848 7,p0.05,n=40)不同。水分胁迫对VIs-K_c模型的相关性影响较大:快速生长期,充分灌溉玉米VIs-K_c模型的相关性(R2最大为0.940 1)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.083 0)强;生长中期至生长后期,充分灌溉玉米VIsK_c模型的相关性(R2最大为0.373 2)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.848 7)弱。部分植被指数和作物系数相关性较强;快速生长期充分灌溉玉米的VIs-K_c模型的相关性由大到小依次为:SR、EVI、VARI、GNDVI、SAVI、NDVI;生长中期至生长后期水分胁迫玉米的VIs-K_c模型的相关性由大到小依次为:SR、GNDVI、VARI、NDVI、SAVI、EVI;其中比值植被指数SR与作物系数K_c的相关性最好。结果表明采用无人机多光谱技术估算K_c具有一定的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号