首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为了探索运用无人机多光谱遥感技术监测高潜水位矿区采煤扰动下原有生态系统破坏及地表耕地损毁程度的方法。以高潜水位矿区开采沉陷导致地面积水所引起的农作物渍害影响为例,基于无人机多光谱影像,在传统植被指数的基础上引入红边波段进行扩展,优选了22种植被指数,结合田间同步实测生物量数据,采用经验模型法分别构建了一元回归、基于最小二乘法的多元逐步回归(Multivariable linear regression,MLR)、反向传播神经网络(Back propagation neural networks,BPNN)的生物量反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA)3个指标筛选出最佳模型。最后基于最佳模型进行研究区玉米生物量的空间分布反演和分析,结果显示:所选的植被指数均与生物量显著相关,其中,最终采用的BP模型的估算精度最高,该模型决定系数R2为0.83,增加了0.10~0.17,预测均方根误差RMSE为178.72 g/m2,减少了29.65~60.23g/m~2,估测精度EA最终可达到79.4%,提高了3.3%~7.1%。说明红边波段更适于采煤沉陷区作物的生物量的估算,引入红边波段构建生物量反演模型,可以显著提高采煤沉陷影响下玉米生物量无人机遥感反演模型的精度。结果表明:研究区内采煤沉陷盆地内玉米生物量主要集中于592~1050g/m~2,面积占研究区的74.4%,地表生物量低于352 g/m~2的作物面积达到14.1%,玉米整体长势受采煤扰动影响较严重,玉米生物量呈现从沉陷盆地边缘往中心逐渐降低的趋势。该研究同类型其他高潜水位矿区土地损毁监测与评价、土地复垦与生态修复等提供基础数据与理论支撑。  相似文献   

2.
叶片含水率和叶水势反映植物组织中水分的状态,是衡量植物水分供应和水分利用效率的重要指标。为探究基于不同高度下无人机多光谱影像反演叶片含水率和叶水势模型的差异,本研究在3个飞行高度处理F30、F60、F100 (30、60、100m)下采集多光谱影像数据,通过使用6种光谱反射率+经验植被指数的组合与地面实测数据进行相关性分析,获得不同飞行高度下的光谱反射率+经验植被指数组合与叶片含水率和叶水势的反演模型及其决定系数,以决定系数为依据分别构建支持向量机(SVM)、随机森林(RF)和径向基神经网络(RBFNN)模型,分析不同飞行高度无人机多光谱影像反演芳樟叶片含水率和叶水势的精度。结果发现:3个飞行高度下,基于RF模型的反演精度均高于SVM模型和RBFNN模型。F30处理对叶片含水率与叶水势反演效果均优于F60和F100处理。F30处理对叶片含水率反演的敏感光谱反射率+植被指数组合为红光波段反射率(R)、红边1波段反射率(RE1)、红边2波段反射率(RE2)、近红外波段反射率(NIR)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)。RF模型训练集的R2、RMSE、MRE分别为0.845、0.548%、0.712%;测试集的R2、RMSE、MRE分别为0.832、0.683%、0897%。对叶水势反演的敏感光谱反射率+植被指数组合为R、RE2、NIR、EVI、SAVI、花青素反射指数(ARI)。RF模型训练集的R2、RMSE、MRE分别为0.814、0.073MPa、3.550%;测试集的R2、RMSE、MRE分别为0.806、0.095MPa、4.250%。研究结果表明飞行高度30m与RF方法分别为反演叶片含水率和叶水势的最优光谱获取高度与最优模型构建方法。本研究可为基于无人机平台的矮林芳樟水分监测提供技术支持,并可为筛选无人机多光谱波段与经验植被指数、实现植物长势参数快速估测提供应用参考。  相似文献   

3.
基于无人机多光谱遥感的马尾松林叶面积指数估测   总被引:2,自引:0,他引:2  
快速、准确、无损估测马尾松林叶面积指数对精准林业管理具有重要意义。以小型低空无人机为平台,搭载RedEdge多光谱传感器,获取福建省西部马尾松林多光谱影像,运用重采样的方式获取并计算不同空间分辨率(0.08、0.1、0.2、0.5、1、2、5m)下的植被指数,结合地面实测LAI数据,分析其与植被指数的相关性,进而采用线性模型(LR)、多元逐步回归模型(MSR)、随机森林模型(RF)、支持向量机模型(SVM)和人工神经网络模型(BP)构建不同空间分辨率下的马尾松林LAI估测模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)和总体精度(TA)来评价估测模型精度,从而确定最佳空间分辨率和最佳模型。结果表明,不同空间分辨率下LAI与植被指数均呈极显著相关(p<0.01);多变量模型(MSR、RF、SVM、BP)的调整R2平均值高于LR模型;随着空间分辨率的增加,不同模型的R2整体上呈先增大后减小的趋势;当空间分辨率为0.5m时,利用植被指数建立的RF模型为马尾松林LAI的最佳估测模型,RF模型的调整R2为0.766,模型估测的R2、RMSE、RPD和TA分别为0.554、0.421、1.523和81.95%。本研究可为无人机多光谱遥感反演森林LAI表型参数的空间分辨率和模型选择提供理论参考。  相似文献   

4.
基于多时相无人机遥感植被指数的夏玉米产量估算   总被引:6,自引:0,他引:6  
为建立夏玉米无人机遥感估产模型,正确评价规模化农业经营管理和用水效率,以内蒙古自治区规模化种植的夏玉米为研究对象,设置了5个不同水分处理的实验区域,每个实验区域布置了3个样区,利用自主研发的多旋翼无人机多光谱遥感平台,对夏玉米进行多时相的遥感监测。采用牛顿-梯形积分和最小二乘法,构建了基于多种植被指数和多种生育期对应的夏玉米实测产量的6种线性模型,并采用阈值滤波法减少土壤噪声对模型精度的影响。结果显示,不同生育期的玉米估产模型精度存在显著差异。单一生育期中,精度由高到低依次为:抽雄期、吐丝期、蜡熟期、拔节期,最优植被指数为EVI2(决定系数R^2=0.72,均方根误差RMSE为485.46 kg/hm^2);多生育期的最优植被指数为GNDVI(R^2=0.89,RMSE为299.35 kg/hm^2)。经过土壤滤波后,拔节期和多生育期的R^2提升显著,其中基于植被指数GNDVI、MASVI2、EVI2的多生育期估产模型的决定系数R2提升到0.87以上。多生育期的无人机遥感估产优于单生育期,最优估产植被指数为GNDVI,阈值滤波法可以有效提升估产精度,优化后基于植被指数的无人机遥感估产模型可以快速有效诊断和评估作物长势和产量。  相似文献   

5.
基于光谱红边位置提取算法的番茄叶片叶绿素含量估测   总被引:1,自引:0,他引:1  
为了快速、准确估测番茄叶片叶绿素含量,分析了不同营养水平下的番茄叶片光谱红边参数变化规律,发现红边位置最能表征番茄叶绿素状况,统计分析了6种算法提取的光谱红边位置的差异性,并为每种算法分别建立了5种估测模型,验证结果表明每种红边位置提取算法所对应的最佳模型为线性四点内插法的指数曲线模型和其他红边位置算法的对数曲线模型。其中线性外推法模型精度最高,校正集决定系数R2c为0.618 6,验证集决定系数R2v达到0.771 1,验证集均方根误差RMSEv为8.359 6,可以有效诊断番茄叶绿素含量。线性四点内插法根据670、700、740、780 nm 4个波段的叶片反射率计算红边位置,运算简单,模型精度较高,R2c为0.621 7,R2v达到0.766 6,RMSEv为8.568 2,可以作为开发番茄叶绿素含量监测仪器的依据。  相似文献   

6.
水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影法、遗传算法优化的粗糙集属性简约法进行高光谱特征选择,提出了仅含有695、507和465nm 3个高光谱特征波段的红边优化指数(ORVI)。与Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括ND528,587、SR440,690、CARI、MCARI的反演结果进行了对比分析,结果表明:IDB数据库中的已有4种植被指数叶绿素含量反演模型的决定系数R2分别为0.672、0.630、0.595和0.574;ORVI植被所建立的叶绿素含量反演模型的决定系数R2为0.726,均方根误差RMSE为2.68,精度高于其他植被指数,说明了ORVI在实际的应用中,能够作为快速反演水稻叶绿素含量的高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定的客观数据支撑和模型参考。  相似文献   

7.
针对玉米叶片反射太阳光时因镜面反射导致获得的无人机影像反射率中存在与冠层结构无关的镜面反射部分,从而影响玉米冠层LAI的反演精度问题,本研究利用小波变换对无人机影像不同波段的阈值设置,在不影响漫反射的前提下削弱镜面反射成分,尽量只保留与冠层结构有关的反射率成分。以2018年7月15日和7月26日获取的河北农业大学辛集试验站多光谱无人机影像为数据源,构建了NDVI、GNDVI、SAVI和EVI 4个植被指数,并分别与ln(LAI)构建玉米冠层的单变量反演模型,利用决定系数和均方根误差进行LAI反演精度评价。精度评价结果表明,在7月15日玉米植株较稀疏时,去除镜面反射后,4个植被指数反演LAI与实测LAI的决定系数分别从0. 719 0、0. 559 8、0. 624 1、0. 598 5上升至0. 763 3、0. 694 0、0. 649 7、0. 619 4,均方根误差分别从0. 224 4、0. 252 6、0. 221 4、0. 224 5下降到0. 188 0、0. 195 8、0. 191 8、0. 198 7,说明去除镜面反射可以提高LAI的反演精度。在7月26日玉米植株相对茂密时,去除镜面反射后,4个指数构建模型对应的决定系数也同样提高,但在这种情况下,NDVI和GNDVI容易发生饱和,用阈值法降低反射率反而会加剧饱和现象,使这2个指数不能充分反映LAI的变化。SAVI和EVI因为加入了冠层背景调整因子,植被指数的变化得到放大,二者在去除镜面反射后与ln(LAI)拟合模型的决定系数都达到0. 6以上,因此,在植被覆盖较茂密时,SAVI指数和EVI指数更适合用于LAI反演。  相似文献   

8.
为实现利用多光谱技术开展芳樟叶绿素相对含量(SPAD)监测,及时快速诊断芳樟矮林生长状况,为田间管理决策提供信息支持,以红壤区芳樟矮林为研究对象,利用无人机多光谱遥感影像,提取波段反射率,筛选植被指数,分别以波段反射率和植被指数为模型输入量,采用偏最小二乘回归、支持向量回归、反向传播(Back propagation, BP)神经网络和径向基函数(Radial basis function, RBF)神经网络4种方法构建芳樟矮林SPAD反演模型,并对比不同输入量、不同模型模拟结果的反演精度。研究结果表明:对比两种不同的输入量,在同一模型反演的精度相差不大;其中,基于偏最小二乘回归法,以植被指数为模型自变量估测芳樟矮林SPAD效果略优;基于支持向量回归、BP神经网络和RBF神经网络,以波段反射率为模型自变量估测芳樟矮林SPAD效果略优;对比4种建模方法,不同方法建模预测精度不同,与偏最小二乘回归、支持向量回归和BP神经网络相比,基于RBF神经网络反演芳樟SPAD的精度最高,以波段反射率和植被指数为模型输入量的测试集为例,其决定系数R2分别为0.788、0.751,均...  相似文献   

9.
基于Sentinel-2遥感影像的玉米冠层叶面积指数反演   总被引:9,自引:0,他引:9  
叶面积指数是描述玉米冠层结构的重要参数之一,决定玉米冠层的光合作用、呼吸作用、蒸腾和碳循环等生物物理过程,因此精确反演叶面积指数对玉米长势监测具有重要意义。以河北省保定市的涿州市、高碑店市、定兴县为研究区,利用Sentinel-2遥感影像和LAI-2000地面同步实测数据进行玉米冠层叶面积指数反演,使用归一化差异光谱指数和比值型光谱指数两类指数,构建了单变量和多变量玉米冠层叶面积指数反演模型,通过决定系数(R2)和均方根误差(RMSE)筛选出最佳模型。研究结果表明,由NDSI(783,705)构建的单变量模型为最优反演模型,其决定系数为0.534 2,均方根误差为0.288 5。因此,基于Sentinel-2遥感影像利用植被指数反演玉米冠层叶面积指数的方法可作为判断玉米长势状况的初步判断依据。  相似文献   

10.
苏伟  姚婵  李颖  张明政  赵国强  刘峻明 《农业机械学报》2021,52(4):190-196;256
针对Sentinel-2卫星影像拥有3个对植被生长状况非常敏感、空间分辨率为20m的红边波段(705、740、783nm),其空间分辨率与可见光和近红外波段10m的空间分辨率不一致,使Sentinel-2影像应用受到限制的问题,基于多光谱多分辨率估计的超分辨率(Super-resolution for multispectral multiresoltion estimation, SupReMe)算法将空间分辨率20m的6个波段重建为10m;以重建后的影像为数据源,耦合PROSAIL辐射传输模型和随机森林模型反演玉米冠层叶面积指数(LAI),并以野外实测LAI验证其反演精度。结果表明,采用SupReMe算法对Sentinel-2影像进行重建后,在保持光谱特性不变的同时提高了影像的空间细节;基于重建影像和原始影像的LAI反演决定系数R2分别为0.70、0.68,均方根误差RSME分别为0.240、0.262。研究表明,利用SupReMe算法重建后的Sentinel-2卫星影像,能够在提高玉米冠层LAI反演空间分辨率的同时提高反演精度,在挖掘高分辨率农作物生长信息方面具有很大潜力。  相似文献   

11.
基于遥感技术估算作物蒸散发(Evapotranspiration,ET)对农业用水效率评价和精量灌溉决策具有重要意义。结合Sentinel-2数据和农田连续地面观测资料,利用混合双源蒸散发模型(Hybrid dual-source scheme and trapezoid framework-based evapotranspiration model,HTEM)对宁夏回族自治区中卫市2019年两个试验田玉米主要生育期(5—8月)的蒸散发量进行估算,并用水量平衡法对遥感估算结果进行验证和评价。结果表明:Sentinel-2数据具有高时空分辨率,能够与研究区复杂的种植地块相匹配,减少了混合像元的数量;遥感反演参数与地面观测数据拟合度较高,研究区2019年遥感反演的玉米田净辐射量均方根误差为36.256 W/m2。利用HTEM模型估算可得,主要生育期内研究区两个玉米试验田的日均实际蒸散发量分别为4.269 mm/d和4.339 mm/d,实际蒸散发总量分别为525.114 mm和533.690 mm,其中植被蒸腾量分别为363.483 mm和358.196 mm,生育初期主要以土壤蒸发形式消耗水分,随着作物的生长,在生育中后期主要以植被蒸腾的形式消耗水分。ET遥感反演结果与水量平衡结果之间差别不显著,两个观测点绝对误差分别为13.533 mm和7.774 mm。因此,结合地面连续观测系统和Sentinel-2数据估算研究区玉米生育阶段蒸散发量具有较高的精度,可为作物耗水规律研究及区域农业水管理提供技术支撑。  相似文献   

12.
为了提高玉米的估产精度,以河北省中部平原为研究区域,采用CERES-Maize模型模拟2013—2018年8个典型样点玉米整个生育期的叶面积指数(LAI),将遥感反演的LAI与CERES-Maize模型模拟的LAI相结合,通过集合卡尔曼滤波(En KF)同化算法实现2013—2018年玉米主要生育时期旬尺度LAI的同化,运用随机森林回归法计算同化和未同化的LAI权重,进而建立玉米单产估测模型,对2015年53个县(区)的玉米进行单产估测和精度评价,并分析2013—2018年玉米的单产时空分布特征。结果表明,采用En KF算法对8个研究样点进行单点同化,同化LAI更符合玉米实际生长情况;将样点LAI同化值从单点尺度扩展到区域尺度,同化LAI图像减少了相邻像素间LAI陡升陡降的现象,其效果优于遥感反演的LAI;与未同化LAI构建的估测模型相比,应用同化的LAI所建的估测模型精度明显提高,R2提高了0.024 5;在2015年河北中部平原53个县(区)估产结果中,总体平均相对误差为12.11%,RMSE为371 kg/hm2,NRMSE为6.18%;河北中部平原玉米单产估测结果呈现个别年份波动、总体呈先减少后增加的年际变化特点,并呈现西部地区最高、北部和南部地区次之、东部地区最低的空间分布特征。  相似文献   

13.
为了提高河北省中部平原夏玉米的估产精度和进一步验证粒子滤波同化算法对农业作物估产的适用性,采用粒子滤波算法同化CERES-Maize模型模拟和MODIS数据反演的叶面积指数(Leaf area index,LAI)、条件植被温度指数(Vegetation temperature condition index,VTCI...  相似文献   

14.
基于高光谱数据的玉米叶面积指数和生物量评估   总被引:1,自引:0,他引:1  
利用高光谱技术获取玉米农学参数信息,有助于提升玉米精准管理水平.本研究基于3个种植密度和5份玉米材料的田间试验,获取玉米大喇叭口期的地面ASD高光谱数据与无人机高光谱影像,分析不同种植密度下不同遗传材料的叶面积指数(LAI)和单株地上部生物量,构建基于全波段、敏感波段和植被指数的LAI和单株地上部生物量高光谱估算模型,...  相似文献   

15.
罗元成  汪应 《农机化研究》2017,(11):212-216
为了提高农作物长势预测的精度和实时性,提出了一种新的基于双目立体视觉的玉米长势自动化监测车辆,并将图像多维重构技术引入到了车辆的设计中,采用自主导航技术在无需人员进入农田的情况下,实现了玉米长势的智能远程监控。为了解决玉米叶面积采集特征数据的冗余导致信息处理速度不高的问题,提出了改进的LPP的降维方法,并对算法进行了验证。测试结果表明:采用LPP算法,能够完成对作物多维特征信息的优化降维,具有较高的实用性和准确性。对玉米长势自动化监测车辆的性能进行了测试,对生物量的预测结果表明:采用监测车辆生物量反演模型得到的长势预测量和实测量的误差较小,从而验证了监测车辆设计的可行性。  相似文献   

16.
基于无人机遥感的高潜水位采煤沉陷湿地植被分类   总被引:4,自引:0,他引:4  
为了掌握采煤沉陷湿地植被的类别和空间分布,促进矿区土地利用、管理和修复,以山东省济宁市东滩煤矿3304工作面为研究区,以无人机多光谱影像为数据源,分别采用面向对象的分类方法和监督分类方法对研究区湿地植被进行分类。基于优选的面向对象尺度分割参数,确定分类规则后构建面向对象分类模型,对湿地植被进行分类,生成植被分布图。同时,利用野外获取的322个采样点进行精度验证。结果表明:与基于像元的监督分类方法相比,面向对象分类方法显著提高了影像分类精度。监督分类方法总体精度为44. 3%,Kappa系数为0. 4;面向对象分类方法总体精度达到84. 2%,Kappa系数为0. 8。该研究为采煤沉陷区湿地调查与开采沉陷影响下地表植被空间分布规律研究提供了方法与基础数据。  相似文献   

17.
AquaCrop模型的适用性及应用初探   总被引:3,自引:2,他引:3  
AquaCrop模型是FAO新推出的以水分为驱动的作物生长模型。为了评价其在华北地区的适用性,于2009-2010年在中国水利水电科学研究院大兴试验站进行了夏玉米水分处理试验,其中2010年的试验数据用于参数率定,2009年的试验教据用于模型验证,并在此基础上对模型参数进行敏感性分析。结果表明,AquaCrop模型能够...  相似文献   

18.
基于小波能量系数和叶面积指数的冬小麦生物量估算   总被引:1,自引:0,他引:1  
生物量是评价作物长势及产量估算的重要指标,科学、快速、准确地获取生物量信息,对于监测冬小麦生长状况以及产量预测等具有重要意义。以冬小麦为研究对象,通过相关性分析,选取相关性较好的小波能量系数,同时耦合叶面积指数,基于支持向量回归算法、随机森林算法、高斯过程回归3种算法构建冬小麦生物量估算模型。结果显示,基于小波能量系数,分别利用支持向量回归算法、随机森林算法、高斯过程回归进行生物量估算,4个生育期的验证R2分别是0.55、0.40、0.39;0.75、0.70、0.83;0.84、0.92、0.93;0.84、0.89、0.85。表明高斯过程回归模型估算精度最优。叶面积指数耦合小波能量系数,利用支持向量回归算法、随机森林回归算法、高斯过程回归进行生物量估算,4个生育期的验证R2分别是0.76、0.73、0.77;0.76、0.72、0.84;0.87、0.94、0.94;0.85、0.90、0.91。表明高斯过程回归算法估算精度最优,并且在一定程度上能够克服冠层光谱饱和现象,提高模型估算精度。以小波能量系数和叶面积指数为输入变量结合高斯过程回归算法建立冬小麦生物量估算模型,可以提高生物量估算精度,为基于遥感技术的作物参数快速估算提供参考。  相似文献   

19.
为了构建能够反映作物长势的综合性指标以及准确估测作物产量,采用粒子滤波算法同化CERES-Wheat模型模拟和基于Landsat数据反演的叶面积指数(Leaf area index,LAI)、地上生物量和0~20 cm土壤含水率,获取冬小麦主要生育期以天为尺度的变量同化值,分析不同生育时期的LAI、地上生物量和土壤含水率同化值与实测单产的相关性,并应用熵值的组合预测方法确定不同状态变量影响籽粒产量的权重,进而生成综合性指数,并分析其与实测单产的相关性。结果表明,LAI、地上生物量和土壤含水率同化值和田间实测值间的均方根误差(Root mean square error,RMSE)以及平均相对误差(Mean relative error,MRE)均低于这些变量模拟值和实测值间的RMSE和MRE,说明数据同化方法提高了时间序列LAI、地上生物量和土壤含水率的模拟精度。基于不同状态变量的权重生成的综合性指数与实测单产间的相关性大于单个变量与实测单产间的相关性;基于综合性指数构建小麦单产估测模型,其估产精度(R2=0.78,RMSE为330 kg/hm2)分别比基于LAI、地上生物量和土壤含水率建立模型的估产精度显著提高,表明构建的综合性指数充分结合了不同变量在作物估产方面的优势,可用于高精度的冬小麦单产估测。  相似文献   

20.
基于无人机多光谱遥感的大豆生长参数和产量估算   总被引:1,自引:0,他引:1       下载免费PDF全文
为适应现代农业发展对作物生长动态、连续、快速监测的要求,本文基于无人机多光谱遥感技术,以西北地区大豆作为研究对象,分别筛选出与大豆叶面积指数(Leaf area index, LAI)、地上部生物量和产量相关性较好的5个植被指数,采用支持向量机(Support vector machine, SVM)、随机森林(Random forest, RF)和反向神经网络(Back propagation neural network, BPNN)分别构建了大豆LAI、地上部生物量和产量的估计模型,并对模型进行了验证。结果表明,基于RF模型构建的大豆LAI和地上部生物量预测模型的精度显著高于SVM与BP模型,LAI估计模型验证集的R2为0.801,RMSE为0.675 m2/m2,MRE为18.684%;地上部生物量估算模型验证集的R2为0.745,RMSE为1 548.140 kg/hm2,MRE为18.770。而在产量的估算模型构建中,在大豆开花期(R4)基于RF模型构建的大豆产量预...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号