首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 238 毫秒
1.
基于SVR算法的苹果叶片叶绿素含量高光谱反演   总被引:3,自引:0,他引:3  
刘京  常庆瑞  刘淼  殷紫  马文君 《农业机械学报》2016,47(8):260-265,272
为实现苹果叶片叶绿素含量的高光谱反演,分析了多种光谱参数与实测SPAD值的相关性,并将归一化光谱参数值及SPAD值进行多项式回归及支持向量回归。其中以归一化植被指数为变量的SVR(Support vector regression)反演模型在建模及模型检验中决定系数分别为0.741 0、0.891 4,均方根误差分别为0.133 2、0.125 6,具有较高的精度及良好的预测能力。与多项式回归相比,SVR具有更好的反演效果,可以作为叶绿素高光谱反演的优选算法。  相似文献   

2.
杨树叶片叶绿素含量高光谱估算模型研究   总被引:3,自引:0,他引:3  
以盆栽107号杨树为研究对象,在验证杨树叶片的SPAD值可作为衡量其叶绿素含量指标的基础上,基于最佳指数-相关系数法(OIFC),提取了杨树叶绿素特征波段(中心波长350、715、1 150 nm),建立了以该组合波段原始光谱数据为自变量的杨树叶片叶绿素含量估算模型;利用相关系数法,提取了杨树叶绿素归一化植被指数的计算波段(中心波长705、953 nm)与一阶光谱导数的叶绿素特征波段(中心波长647、691、721 nm),且分别建立了基于归一化植被指数、叶面叶绿素指数、一阶光谱导数为自变量的杨树叶片叶绿素含量估算模型;比较分析所建立的模型精度,筛选出杨树叶片的叶绿素含量最优估算模型。结果表明:化学法测得杨树叶片叶绿素含量与其对应的SPAD值之间具有显著的幂函数关系,R2可达0.902 3。利用OIFC法提取的叶绿素最佳三波段组合的高光谱数据为自变量,与叶片叶绿素含量构建的模型预测值与实测值具有显著的线性关系,决定系数为0.944 5;相比其他模型,该模型的精度最高且均方根误差最小。可见,基于OIFC法构建的杨树叶绿素高光谱模型具有较高的精度,是估算杨树叶片叶绿素含量的最优模型。  相似文献   

3.
基于高光谱和深度迁移学习的柑橘叶片钾含量反演   总被引:2,自引:0,他引:2  
针对传统柑橘叶片钾含量检测方法耗时费力、操作繁琐且损伤叶片等弊端,引入高光谱信息探索柑橘叶片钾含量快速无损检测与预测模型,选用ASD Field Spec 3光谱仪采集柑橘4个重要物候期(萌芽期、稳果期、壮果促梢期和采果期)的叶片反射光谱,同步采用火焰光度法测定叶片的钾含量;先用正交试验确定小波去噪的最佳去噪参数组合,再进行不同光谱形式变换,对不同物候期光谱进行基于堆栈稀疏编码机-深度学习网络(Stacked sparse autoencoder-deep learning networks,SSAE-DLNs)的特征提取迁移和融合多种特征,对比支持向量机回归、偏最小二乘法回归、广义神经网络、逐步多元线性回归等多种诊断模型,结果表明,模型SSAE-DLNs基于一阶微分光谱特征建立全生长期钾含量预测模型的性能最优,其校正集和验证集决定系数分别为0. 898 8、0. 877 1,均方根误差分别为0. 544 3、0. 552 8。试验表明,深度迁移学习网络可对柑橘叶片钾含量进行精确预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。  相似文献   

4.
冬小麦叶绿素含量高光谱检测技术   总被引:7,自引:1,他引:7  
以大田冬小麦叶绿素含量为研究对象,首先利用高光谱成像系统以线扫描方式获取其反射光谱图像,选择感兴趣区域(ROI)并计算出光谱平均反射率值;然后分别针对其原始光谱和一阶差分光谱,通过相关分析和逐步回归分析,得到能反映叶绿素含量变化的7个最佳优化波长;进而基于该优化波长采用多元线性回归(MLR)方法组建模型,通过假设检验剔除对模型贡献不显著的3个波长变量.选用剩余的4个波长即710.85、767.42、650和520 nm作为自变量重新建立模型,基于校正集和预测集模型的决定系数R2分别为0.843 4和0.709 3.研究结果表明,利用高光谱技术检测大田冬小麦叶绿素含量的方法是可行的.  相似文献   

5.
以大田冬小麦叶绿素含量为研究对象,首先利用高光谱成像系统以线扫描方式获取其反射光谱图像,选择感兴趣区域(ROI)并计算出光谱平均反射率值;然后分别针对其原始光谱和一阶差分光谱,通过相关分析和逐步回归分析,得到能反映叶绿素含量变化的7个最佳优化波长;进而基于该优化波长采用多元线性回归(MLR)方法组建模型,通过假设检验剔除对模型贡献不显著的3个波长变量。选用剩余的4个波长即710.85、767.42、650和520nm作为自变量重新建立模型,基于校正集和预测集模型的决定系数R2分别为0.8434和0.7093。研究结果表明,利用高光谱技术检测大田冬小麦叶绿素含量的方法是可行的。  相似文献   

6.
基于高光谱的柑橘叶片磷含量估算模型实验   总被引:7,自引:0,他引:7  
以117株园栽罗岗橙为实验对象,分别在壮果促梢期和采果期2个不同发育阶段采集234个数据样本,高光谱反射数据构成每个数据样本中的高维矢量描述,用化学方法测得磷含量值作为样本真实目标值,用偏最小二乘法(PLS)及支持矢量回归(SVR)2种多元回归分析算法,在对反射光谱进行各种形式预处理的基础上对柑橘叶片磷含量进行建模和磷含量预测.模型分别在校正集和测试集上进行评估,取得最佳模型决定系数分别为0.905和0.881,均方误差分别为0.005和0.004,平均相对误差分别为0.026 4和0.031 2.实验结果表明:基于高光谱反射数据进行磷含量预测是可行的.  相似文献   

7.
为了实现无损检测生菜叶片中重金属镉的含量,以高光谱技术为研究手段,研究一种基于高光谱技术的精确、快速和有效检测生菜中重金属镉含量的方法。首先,使用高光谱图像采集系统获取生菜高光谱图像,并提取光谱数据,对提取出的光谱数据采用连续投影算法(SPA)和基于权重回归系数的特征选择算法进行特征提取,建立预测生菜叶片中镉含量的最小二乘支持向量回归(LSSVR)模型。结果表明:SPA-LSSVR模型性能最佳,其中预测集决定系数为0.927 3,均方根误差为0.093 mg/kg。因此,利用高光谱技术结合SPA-LSSVR模型对生菜叶片中重金属镉含量进行预测是可行的,可为实际应用提供技术支持和参考。   相似文献   

8.
基于高光谱成像的马铃薯叶片叶绿素分布可视化研究   总被引:3,自引:0,他引:3  
郑涛  刘宁  孙红  龙耀威  杨玮  ZHANG Qin 《农业机械学报》2017,48(S1):153-159, 340
针对马铃薯作物叶片进行了叶绿素含量无损检测技术及分布图绘制方法研究,用以指示作物长势并指导精细化管理。首先利用高光谱成像技术采集了65个马铃薯叶片的400个样本点高光谱图像和相应的SPAD值,提取并计算叶绿素测量区域的叶片平均光谱后,分别采用蒙特卡罗无信息变量消除算法(MC-UVE)和自适应重加权算法(CARS)筛选出了12个和23个叶绿素含量敏感波长,建立了马铃薯叶片叶绿素含量偏最小二乘(PLS)回归模型。建模结果如下:基于MC-UVE算法筛选的12个敏感波长的PLSR诊断模型,建模精度R2C为0.79,验证精度R2V为0.73;基于CARS算法筛选的23个敏感波长建立的PLSR诊断模型,建模精度R2C为0.82,验证精度R2V为0.80。择优选取CARS-PLSR模型计算马铃薯叶片每个像素点的叶绿素含量,从而利用伪彩色绘图绘制了马铃薯叶片叶绿素含量可视化分布图,最终实现马铃薯叶片含量无损检测以及叶绿素分布可视化表达,以期为后续马铃薯作物大田冠层叶绿素分布诊断提供支持。  相似文献   

9.
叶绿素荧光参数Fv/Fm在植物逆境胁迫研究中具有重要意义,当前获取方法需要对植物进行暗适应处理,难以实现实时测量。为实现Fv/Fm的实时获取,本文以4种水分胁迫水平下的辣椒为研究对象,基于高光谱成像及特征波段筛选方法对Fv/Fm进行预测。采用中值滤波对Fv/Fm图像去噪,并基于二维坐标变换实现高光谱图像与叶绿素荧光图像的匹配。对比标准正态变换(SNV)、多元散射校正(MSC)和Savitzky-Golay卷积平滑(SG)3种光谱预处理算法,并基于连续投影(SPA)算法筛选特征波长。基于效果最优的SG预处理算法,分别以偏最小二乘回归(PLSR)、分析误差反向传播(BP)神经网络、径向基函数(RBF)神经网络对比建模精度,其中BP算法建立的模型精度相对较高,其测试集决定系数为0.918、均方根误差为0.011。研究表明,SG-SPA-BP的建模方法在实现预测精度的同时降低了模型复杂度,为基于高光谱图像对Fv/Fm图像的实时准确预测提供了方法。  相似文献   

10.
定量测定小麦叶片叶绿素含量在小麦估产、农情监测等方面具有重要意义.本研究验证高光谱成像技术结合偏最小二乘-最小二乘支持向量机(PLS-LS-SVM)建模方法预测大田冬小麦叶绿素含量的可行性.首先利用所搭建高光谱成像系统以线扫描方式获取大田冬小麦叶片反射光谱,进而得到其立方体图像数据,并在小麦叶片光谱图像上选择感兴趣区域计算出光谱平均反射率值.为保证PLS-LS-SVM模型的鲁棒性和预测稳定性,首先通过PLS方法解决多重共线性问题并将输入变量维数减至4维,然后利用LS-SVM进行训练建模.所建叶绿素含量预测模型的决定系数达R2=0.8459,预测均方根误差RMSEV=0.4370.研究结果表明,基于高光谱成像系统,采用PLS-LS-SVM建立模型用来预测大田冬小麦叶绿素含量是完全可行的.  相似文献   

11.
王亚洲  肖志云 《农业机械学报》2024,55(1):196-202,378
针对智慧农业中叶绿素的精准预测问题,本文提出了基于双分支网络的玉米叶片叶绿素含量高光谱与多光谱协同反演的方法。使用欠完备自编码器进行数据降维,捕捉数据中最为显著的特征,使降维后的数据可以代替原始数据进行训练,从而加快训练效率,使用双分支卷积网络将多光谱数据用于填充高光谱数据信息,充分利用高光谱数据的空间细节信息,再结合1DCNN建立玉米叶片叶绿素含量预测模型。结果表明,与传统降维算法相比较,欠完备自编码器处理后预测结果最佳,决定系数R2为0.988,均方根误差(RMSE)为0.273,表明使用欠完备自编码器进行降维可以有效提高数据反演精度;与单一的高光谱数据反演模型和多光谱数据反演模型相比,双分支卷积网络预测模型均取得较优的预测结果,R2在0.932以上,RMSE均在1.765以下,表明基于双分支卷积网络的高光谱与多光谱图像协同反演模型可以有效地利用数据的特征;对于其他数据结合本文提及的双分支卷积网络模型进行反演,其R2均在0.905以上,RMSE均在2.149以下,表明该预测模型具有一定的普适性。  相似文献   

12.
为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network, Att-BiGRU-RNN)分类模型。该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率。获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy, OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升。实验结果表明,深度学习方法可有效利用高光谱不同...  相似文献   

13.
高光谱成像技术的玉米叶片氮含量检测模型   总被引:2,自引:0,他引:2  
应用高光谱成像技术,实现了玉米拔节期叶片氮含量的检测。提取出240个叶片样本的平均光谱反射率数据(400~1 000nm),对原始数据分别进行3种预处理(1stDer、2ndDer、SNV),建立了4种预测模型,包括基于幅值参数(Dλr、Dλy、Dλb)的多种回归模型、全光谱PLS模型、基于连续投影算法(SPA)的PLS模型及基于主成分分析法(PCA)的PLS模型。建模结果显示:基于PCA的PLS模型预测精度最低;全光谱的PLS模型Rc2和RP2分别为0.967、0.821;基于SPA算法的PLS模型R_c~2、R_P~2分别为0.944、0.749,与全光谱的PLS模型预测精度相当,而自变量个数减少了95.07%。基于幅值参数的多元回归模型其预测结果虽与基于全光谱的PLS模型有些许差距,但模型简单,运算量最小,适用于对精度要求不高的场合。  相似文献   

14.
科学、高效地获取作物不同叶位叶绿素含量的垂直分布信息,可监测农作物长势状况并进行田间管理。基于冬小麦抽穗期获取的不同叶位叶片的高光谱反射率和叶绿素含量实测数据,将原始光谱、一阶微分光谱、二阶微分光谱、植被指数和连续小波系数与叶绿素含量进行相关性分析,筛选相关性较强的光谱特征参数,然后分别采用偏最小二乘回归、支持向量机、随机森林和反向传播神经网络4种机器学习算法构建冬小麦上1叶、上2叶、上3叶和上4叶的叶绿素含量估算模型,并根据精度评估结果筛选不同叶位叶绿素含量估算的最佳模型。结果表明,上1叶、上2叶和上3叶采用小波系数结合偏最小二乘回归构建的叶绿素含量估算模型精度最高,建模和验证R2分别为0.82和0.75、0.80和0.77、0.71和0.62;上4叶采用植被指数结合支持向量机构建的叶绿素含量估算模型效果最佳,建模和验证R2为0.74和0.79。研究结果可为基于遥感技术精准监测作物营养成分的垂直变化特征提供理论和技术支撑。  相似文献   

15.
基于高光谱图像的桑叶农药残留种类鉴别研究   总被引:3,自引:0,他引:3  
研究了一种快速、精确、无损检测桑叶农药残留的方法。以不含农药残留的桑叶、含有敌敌畏残留的桑叶、含有毒死蜱残留的桑叶、含有乙酰甲胺磷残留的桑叶、含有乐果残留的桑叶和含有辛硫磷残留的桑叶为实验对象,利用高光谱成像仪获取390~1 050 nm范围内的桑叶高光谱图像。利用ENVI软件确定叶片的感兴趣区域,并采用连续投影算法(SPA)优选出10个特征波长(452.51、469.88、517.28、539.85、578.92、643.72、727.24、758.34、785.67、819.67 nm)。利用基于径向基内核(RBF)的支持向量机(SVM)和10折交叉验证的方法建立桑叶农残检测模型,并讨论了3种参数寻优算法(网格搜索、遗传算法和粒子群算法)对模型性能的影响,发现采用网格搜索的SVM模型的性能最优,其交叉验证正确率为63.89%,预测正确率为78.33%。为了进一步提升模型的分类性能,将自适应提升算法(Adaboost)引入到SVM建模方法,基于特征波长下的光谱数据,对桑叶是否含有农药残留及农药残留品种进行分类建模。结果表明,Ada-SVM模型的预测准确率达到97.78%,较传统SVM模型的准确率提高了19.45个百分点。可见,利用高光谱图像技术结合Ada-SVM算法能够较准确地鉴别桑叶农药残留。  相似文献   

16.
针对任意放置姿态下的轻微绿皮马铃薯难以检测的问题,进行了半透射与反射高光谱成像方式的不同检测方法比较研究,最终确定较优高光谱成像方式的检测方法。分别以半透射与反射高光谱成像方式对图像维提取RGB、HSV和Lab空间颜色信息,并采用等距映射、最大方差展开、拉普拉斯特征映射进行图像信息降维;分别以半透射与反射高光谱成像方式对光谱维提取感兴趣区域的平均光谱数据,并采用局部保持投影、局部切空间排列、局部线性协调进行光谱信息降维;然后分别建立不同高光谱成像方式下的图像与光谱信息的深度信念网络模型;对识别率良好的模型采用多源信息融合技术进一步优化,并建立基于图像和光谱融合或不同成像方式融合的模型。结果表明,基于半透射和反射高光谱的光谱信息融合模型最优,校正集和测试集识别率均达到100%,可实现轻微绿皮马铃薯的无损检测。  相似文献   

17.
基于叶面叶绿素分布特征的黄瓜叶片氮钾元素亏缺诊断   总被引:1,自引:0,他引:1  
利用高光谱图像技术无损表征黄瓜叶片的叶绿素分布特征,并将其作为N、K元素亏缺诊断依据。采集黄瓜叶片的高光谱图像数据,利用高效液相色谱法分析黄瓜叶片的叶绿素含量,利用遗传算法建立叶片高光谱图像信号与叶绿素含量的对应关系,进而实现黄瓜叶片叶绿素分布图的无损检测。与对照组叶片的叶绿素分布图相比,缺N叶片主要表现为叶片中心区域叶绿素含量偏低,而缺K叶片主要表现为叶片边缘的局部区域叶绿素含量偏低。据此分别提取缺N、缺K叶片及对照组叶片的叶绿素及其分布特征(叶片中心区域所有像素点的叶绿素含量均值、叶片边缘区域叶绿素含量偏低的像素点数量),并借助提取的特征参数建立了N、K元素亏缺诊断方法,其正确诊断率为95%。研究结果表明,叶绿素叶面分布特征可有效实现黄瓜植株N、K元素的亏缺诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号