首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Background

Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999.

Results

The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate.

Conclusions

Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.  相似文献   

2.

Background

To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). The model explicitly considers moisture storage in the soil. I manipulated daily rainfall variability by changing the daily mean rain (DMR, rain volume on rainy days averaged across years for each day of the year) by ± 20%. At the same time I adjusted intervals appropriately between rainy days for keeping the mean annual volume constant. In factorial combination with changing DMR I also changed MAP by ± 20%.

Results

Increasing MAP generally increased water availability, establishment, and peak shoot biomass. Increasing DMR increased the time that water was continuously available to plants in the upper 15 to 30 cm of the soil (longest wet period, LWP). The effect of DMR diminished with increasing humidity of the climate. An interaction between water availability and density-dependent germination increased the establishment of seedlings in the arid region, but in the more humid regions the establishment of seedlings decreased with increasing DMR. As plants matured, competition among individuals and their productivity increased, but the size of these effects decreased with the humidity of the regions. Therefore, peak shoot biomass generally increased with increasing DMR but the effect size diminished from the semiarid to the mesic Mediterranean region. Increasing DMR reduced via LWP the annual variability of biomass in the semiarid and dry Mediterranean regions.

Conclusion

More rainstorms (greater DMR) increased the recharge of soil water reservoirs in more arid sites with consequences for germination, establishment, productivity, and population persistence. The order of magnitudes of DMR and MAP overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation.  相似文献   

3.
Projected change in forage production under a range of climate scenarios is important for the evaluation of the impacts of global climate change on pasture‐based livestock production systems in Brazil. We evaluated the effects of regional climate trends on Panicum maximum cv. Tanzânia production, predicted by an agro‐meteorological model considering the sum of degree days and corrected by a water availability index. Data from Brazilian weather stations (1963–2009) were considered as the current climate (baseline), and future scenarios, based on contrasting scenarios in terms of increased temperature and atmospheric CO2 concentrations (high and low increases), were determined for 2013–2040 (2025 scenario) and for 2043–2070 (2055 scenario). Predicted baseline scenarios indicated that there are regional and seasonal variations in P. maximum production related to variation in temperature and water availability during the year. Production was lower in the Northeast region and higher in the rainforest area. Total annual production under future climate scenarios was predicted to increase by up to 20% for most of the Brazilian area, mainly due to temperature increase, according to each climate model and scenario evaluated. The highest increase in forage production is expected to be in the South, Southeast and Central‐west areas of Brazil. In these regions, future climate scenarios will not lead to changes in the seasonal production, with larger increases in productivity during the summer. Climate risk is expected to decrease, as the probability of occurrence of low forage productions will be lower. Due to the predicted increase in temperature and decrease in rainfall in the Northeast area, P. maximum production is expected to decrease, mainly when considering scenarios based on the PRECIS model for the 2055 scenario.  相似文献   

4.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

5.

Background  

Large-scale climatic variability has been implicated in the population dynamics of many vertebrates throughout the Northern Hemisphere, but has not been demonstrated to directly influence dynamics at multiple trophic levels of any single system. Using data from Isle Royale, USA, comprising time series on the long-term dynamics at three trophic levels (wolves, moose, and balsam fir), we analyzed the relative contributions of density dependence, inter-specific interactions, and climate to the dynamics of each level of the community.  相似文献   

6.
Groundwater recharge from irrigated paddy field under various projected climate change scenarios was assessed using HYDRUS-1D model. Recharge flux, root water uptake, evaporation and surface runoff were simulated on daily time step for the growing period of paddy. Crop evapotranspiration and effective rainfall during the simulation period were estimated to be 301.9 and 269.4 mm, respectively. Cumulative bottom flux, root water uptake, evaporation and surface runoff were 69.2, 23.2, 30.8 and 0.0 cm for sandy loam and 37.2, 23.0, 30.8 and 0.7 cm for clay loam soils, respectively. Simulation results showed that the groundwater recharge potentials in sandy loam and clay loam soils with paddy crop are 69.2 and 37.2 cm, respectively. Cumulative recharge under various climate change scenarios from paddy field varied from 63.9 to 74.4 cm, 33.7 to 39.8 cm, 29.3 to 35.4 cm and 27.1 to 34.3 cm from land units A1 (sandy loam), B1 (clay loam with slight salinity), C1 (clay loam with moderate saline and slight sodic) and D1 (clay loam with strong saline and sodic), respectively. Cumulative recharge flux under the scenarios in which increase in relative humidity along with decrease in duration of sunshine hours was associated with rise in average temperature and wind speed, groundwater recharge would increase by 7.4 %. Cumulative recharge flux under the scenarios which were based on rise in temperature along with the increase in rainfall, groundwater recharge would increase by 0.2–3.9 %. Simulation results also showed that cumulative recharge would decrease under all those scenarios, which were based on rise in temperature only.  相似文献   

7.

Background

Long-distance migratory birds in North America have undergone precipitous declines over the past half-century. Although the trend is clear, for many migrating species underpinning the exact causes poses a challenge to conservation due to the numerous stressors that they encounter. Climate conditions during all phases of their annual cycle can have important consequences for their survival. Here, using 15 years of capture-recapture dataset, we determined the effects of various climate factors during the breeding, wintering, and migrating stages on the annual survival of a western yellow-breasted chat (Icteria virens auricollis) population breeding in southwestern Canada.

Results

El Niño effects over the entire annual cycle had little influence on the annual apparent survival of yellow-breasted chats. However, we found evidence that wind conditions during migration, specifically average westerly wind speed or the frequency of storm events, had significant adverse effects on adult annual apparent survival. In comparison, precipitation levels on wintering ground had little to no influence on adult annual apparent survival, whereas growing degree days on the breeding ground had moderate but positive effects.

Conclusions

In the face of climate change and its predicted impacts on climate processes, understanding the influence of weather conditions on the survival of migrating birds can allow appropriate conservation strategies to be adopted for chats and other declining neotropical migrants.
  相似文献   

8.

Background

The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers.

Results

Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers.

Conclusions

Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
  相似文献   

9.

Background  

Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades.  相似文献   

10.

Background

Carnivores are re-establishing in many human-populated areas, where their presence is often contentious. Reaching consensus on management decisions is often hampered by a dispute over the size of the local carnivore population. Understanding the reproductive dynamics and individual movements of the carnivores can provide support for management decisions, but individual-level information can be difficult to obtain from elusive, wide-ranging species. Non-invasive genetic sampling can yield such information, but makes subsequent reconstruction of population history challenging due to incomplete population coverage and error-prone data. Here, we combine a collaborative, volunteer-based sampling scheme with Bayesian pedigree reconstruction to describe the pack dynamics of an establishing grey wolf (Canis lupus) population in south-west Finland, where wolf breeding was recorded in 2006 for the first time in over a century.

Results

Using DNA extracted mainly from faeces collected since 2008, we identified 81 individual wolves and assigned credible full parentages to 70 of these and partial parentages to a further 9, revealing 7 breeding pairs. Individuals used a range of strategies to obtain breeding opportunities, including dispersal to established or new packs, long-distance migration and inheriting breeding roles. Gene flow occurred between all packs but inbreeding events were rare.

Conclusions

These findings demonstrate that characterizing ongoing pack dynamics can provide detailed, locally-relevant insight into the ecology of contentious species such as the wolf. Involving various stakeholders in data collection makes these results more likely to be accepted as unbiased and hence reliable grounds for management decisions.
  相似文献   

11.

Background

Grasses are hyper-accumulators of silicon (Si) and often up-regulate Si following herbivory. Positive correlations exist between Si and plant water content, yet the extent to which Si uptake responses can be mediated by changes in soil water availability has rarely been studied and never, to our knowledge, under field conditions. We used field-based rain-exclusion shelters to investigate how simulated grazing (shoot clipping) and altered rainfall patterns (drought and elevated precipitation, representing 50% and 150% of ambient precipitation levels, respectively) affected initial patterns of root- and shoot-Si uptake in a native Australian grass (Microlaena stipoides) in Si-supplemented and untreated soils.

Results

Si supplementation increased soil water retention under ambient and elevated precipitation but not under drought, although this had little effect on Si uptake and growth (tiller numbers or root biomass) of M. stipoides. Changes in rainfall patterns and clipping had strong individual effects on plant growth and Si uptake and storage, whereby clipping increased Si uptake by M. stipoides under all rainfall treatments but to the greatest extent under elevated precipitation. Moreover, above-ground–below-ground Si distribution only changed following elevated precipitation by decreasing the ratio of root:shoot Si concentrations.

Conclusions

Results highlight the importance of soil water availability for Si uptake and suggest a role for both active and passive Si transport mechanisms. Such manipulative field studies may provide a more realistic insight into how grasses initially respond to herbivory in terms of Si-based defence under different environmental conditions.
  相似文献   

12.

Background

The gypsovag shrub Cistus clusii is locally dominant in semi-arid gypsum plant communities of North-Eastern Spain. This species commonly grows in species-poor patches even though it has nurse potential, suggesting interference on neighbouring species. Other Cistus species exert a chemically mediated interference on plant communities, suggesting that it might be a common phenomenon in this genus. This study aimed investigating whether C. clusii exerts chemically mediated interference on neighbouring species in gypsum plant communities. We tested in a greenhouse whether aqueous extracts from C. clusii leaves (L), roots (R) and a mixture of both (RL) affected germination, seedling survival, and growth of nine native species of gypsum communities, including C. clusii itself. We further assessed in the field richness and abundance of plants under the canopy of C. clusii compared to Gypsophila struthium (shrub with a similar architecture having a nurse role) and in open patches. Finally, we specifically assessed in the field the influence of C. clusii on the presence of the species tested in the greenhouse experiment.

Results

Aqueous extracts from C. clusii (R and RL) negatively affected either germination or survival in four of nine species. In the field, richness and abundance of plants were lower under the canopy of C. clusii than under G. struthium, but higher than in open patches. Specifically, five of nine species were less frequent than expected under the canopy of C. clusii.

Conclusions

Cistus clusii shows species-specific interference with neighbouring species in the community, which may be at least partially attributable to its phytotoxic activity. To our knowledge, this is the first report of species-specific interference by C. clusii.
  相似文献   

13.

Background

A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression.

Results

We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM) of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density.

Conclusions

At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point), the dominance of breeders could not be sustained (incomplete control). In our experiment, this point was reached after territories could not shrink any further, while the number of intruders continued to increase with increasing density. Probably suppression becomes too costly for the dominants, and increasing number of other breeders reduces the effectiveness of threats. In wild populations, crossing this threshold would allow for a rapid density increase or population outbreaks, enabling territorial species to escape density-dependency.  相似文献   

14.
Summary

Atmospheric carbon dioxide (CO2) concentration has risen from about 270 mmol (CO2) mol?1 (air) (i.e., mole fraction of dry atmospheric air basis) before 1700 to about 370 mmol mol ?1 currently. General Circulation Models (GCM) have predicted a global temperature rise of 2.8 to 5.2°C for a doubling of CO2. This review examines evapotranspiration and water-use efficiency responses of plants to rising CO2 and climatic changes, especially temperature. Doubling of CO2 will decrease leaf stomatal conductance to water vapor about 40%. However, water use by C3 crop plants under field conditions has usually been decreased only 12% or less for two reasons. Firstly, feedbacks in the energy balance of plant foliage cause leaf temperatures to rise as stomatal conductance is decreased. Increases of leaf temperature raise the vapor pressure of water inside the leaf, which increases the leaf-to-air vapor pressure difference. This increased driving force for transpiration offsets in large part the decreased leaf conductance caused by elevated CO2. Secondly, CO2 enrichment tends to cause leaf area to increase more rapidly in many crops. This increased leaf surface area for transpiration also offsets part of the decreased stomatal conductance per unit leaf area on the whole canopy evapotranspiration, but the energy budget feedbacks are more important.

Experiments point to a yield enhancement of 30 to 35% for C3 crops for the direct effects a doubling of CO2 (without ancillary climate change). If temperature rises, this yield enhancement may be greater for vegetative growth but less for seed grain yield. Experiments on both ambient and elevated CO2 treatments in sunlit growth chambers showed that transpiration rates increased 20% when air temperature was changed from 28 to 33 °C and increased 30% when temperature was increased from 28 to 35 °C. Thus, under well-watered conditions, evapotranspiration will increase about 4 to 5% per 1°C rise in temperature.

Crop model predictions of yields of soybean and maize showed a reduction due to temperature increases by two GCM models. Under Southeastern USA conditions, doubling CO2 in the Goddard Institute for Space Studies (GISS) climate change scenario resulted in an 12% increase in yields, but yields decreased 50% in the Geophysical Fluids Dynamics Laboratory (GFDL) climate change scenario. Optimum irrigation for both models gave yield increases of about 10%. These model results illustrate the critical requirement of water for production of crops. Under rainfed conditions, crop yields could suffer tremendously if growing season precipitation is decreased, but yields could increase moderately if growing season precipitation is increased. Under the high growing season rainfall scenario (GISS), irrigation requirements for optimum soil water were increased 22%, but under the low rainfall scenario (GFDL), irrigation requirements were increased 111%.

Without the effects of climate change, rising CO2 will cause an increase in crop water-use efficiency (WUE). Most of the increases in WUE will be due to increases in dry matter, with little or no contribution from decreases in water use per unit land area. Growers could produce higher yields per unit land area with higher total production, or maintain the same total production with less land and less total water use. However, if temperatures rise, transpirational water use will increase, and WUE will decline. Higher temperatures, and especially less rainfall, would raise the irrigation requirements of crops. Competition for water resources from other uses could result in less water available for irrigation.  相似文献   

15.

According to hydrological simulations by the Mekong River Commission, average annual flow of the Mekong will not change significantly despite climate change. However, they projected increased variability in wet and dry season flows, which will tend to increase the flood and drought risks to crops. To learn the implications of climate change for rice farming in the Lower Mekong Basin (LMB), a lower part of the Basin from China-Lao PDR border to the South China Sea, climate and hydrological figures related to rice production were compared in between the baseline in 1985–2000 and the climate change scenario in 2010–2050. Special attention was given to their 10 and 90 % exceedance values, which are rough equivalence of 10 and 90 % cumulative probabilities, to see changes in the frequency and extent of extreme weather events. Major findings of this study include the followings: (1) evapo-transpirations will increase in both average and 90 % cumulative probability values, raising irrigation demand. (2) Deviation of the annual rainfall will become larger, causing water shortage in reservoirs more frequently in the future. (3) The transplanting date of rain-fed rice will be delayed more likely due to insufficient precipitation in the early wet season, which may result in decreasing rice production. (4) Longer dry spells will be observed during the wet season, raising the drought risk to rain-fed rice. (5) These changes will be generally observed across the LMB, while the extent of the changes varies among regions.

  相似文献   

16.

Background

Regular seasonal changes in prevalence of infectious diseases are often observed in nature, but the mechanisms are rarely understood. Empirical tests aiming at a better understanding of seasonal prevalence patterns are not feasible for most diseases and thus are widely lacking. Here, we set out to study experimentally the seasonal prevalence in an aquatic host-parasite system. The microsporidian parasite Hamiltosporidium tvärminnensis exhibits pronounced seasonality in natural rock pool populations of its host, Daphnia magna with a regular increase of prevalence during summer and a decrease during winter. An earlier study was, however, unable to test if different starting conditions (initial prevalence) influence the dynamics of the disease in the long term. Here, we aim at testing how the starting prevalence affects the regular prevalence changes over a 4-year period in experimental populations.

Results

In an outdoor experiment, populations were set up to include the extremes of the prevalence spectrum observed in natural populations: 5% initial prevalence mimicking a newly invading parasite, 100% mimicking a rock pool population founded by infected hosts only, and 50% prevalence which is commonly observed in natural populations in spring. The parasite exhibited similar prevalence changes in all treatments, but seasonal patterns in the 100% treatment differed significantly from those in the 5% and 50% treatments. Populations started with 5% and 50% prevalence exhibited strong and regular seasonality already in the first year. In contrast, the amplitude of changes in the 100% treatment was low throughout the experiment demonstrating the long-lasting effect of initial conditions on prevalence dynamics.

Conclusions

Our study shows that the time needed to approach the seasonal changes in prevalence depends strongly on the initial prevalence. Because individual D. magna populations in this rock pool metapopulation are mostly short lived, only few populations might ever reach a point where the initial conditions are not visible anymore.  相似文献   

17.
In order to describe grasshopper (Orthoptera: Acrididae) species composition, diversity, abundance, and density of four rangelands types, we compared the grasshopper community composition and dynamics in the rangeland of the northern slopes of the Qilian Mountains. In total, 55 grasshopper species were collected from 2007 to 2009, representing three families and six subfamilies. The subfamily Oedipodinae was dominant, followed by Gomphocerinae and Catantopinae. Species abundance varied among rangeland types (RTs). The greatest abundance of grasshoppers was found in mountain rangeland, while the lowest abundance of grasshoppers was caught in alpine shrublands. Three species (Chorthippus cf. brunneus (Thunberg) (Acrididae), Chorthippus Dubius (Zubovski), and Gomphocerus licenti (Chang) were broadly distributed in the four RTs and constituted 7.5% of all grasshoppers collected. Ch. dubius was very abundant in desert rangeland and alpine shrubland. Bryodema dolichoptera Yin et Feng Eremippus qilianshanensis Lian and Zheng, and Filchnerella qilianshanensis Xi and Zheng (Pamphagidae) were endemic to the region of the Qilian Mountains. Species similarity between RTs ranged from 17.8 to 51.6 based on the Renkonen index. Similarly, the Sörensen index indicated a wide separation in species composition among RTs. The abundance of the eight most common species showed obvious differences among RTs and years. On average, mountain rangeland had the highest density values in 2007 and 2008, and alpine shrubland supported the smallest density. The densities in desert and mountain rangeland in 2007 were significantly higher than in 2008, while alpine rangeland and shrublands did not present obvious differences among years.  相似文献   

18.
Rainfall amount drawn by typhoon events accounts for a significant portion of annual rainfall in Taiwan. Changes in typhoon rainfall due to climate change may have severe consequences for water resources management. A stochastic simulation approach is proposed for evaluation of changes in typhoon rainfall under certain climate change scenarios. The number of typhoon events and total rainfall of individual typhoon events are, respectively, considered as random variables of the Poisson and Gamma distributions. Climate change scenarios were set by varying various degrees of changes in average number of typhoon events annually and the mean of event-total rainfall. Using stochastic simulation, basin-wide annual typhoon rainfalls were simulated for the Shihmen Reservoir watershed in northern Taiwan. It is found that 10% increases in average annual number of typhoon events and mean event-total rainfall will result in 18% increase in the annual typhoon rainfall of 5-year return period, whereas the annual typhoon rainfall of 10-year return period will increase by 15% under the same climate change scenario. Such increases may cause significant increase in reservoir sediment and pose challenges to reservoir management.  相似文献   

19.

Background:

Apolipoprotein A2 (APOA2) is the second major apolipoprotein of the high-density lipoprotein cholesterol (HDL-C). The study aim was to identify APOA2 gene variation in individuals within two extreme tails of HDL-C levels and its relationship with HDL-C level.

Methods:

This cross-sectional survey was conducted on participants from Tehran Glucose and Lipid Study (TLGS) at Research Institute for Endocrine Sciences, Tehran, Iran from April 2012 to February 2013. In total, 79 individuals with extreme low HDL-C levels (≤5th percentile for age and gender) and 63 individuals with extreme high HDL-C levels (≥95th percentile for age and gender) were selected. Variants were identified using DNA amplification and direct sequencing.

Results:

Screen of all exons and the core promoter region of APOA2 gene identified nine single nucleotide substitutions and one microsatellite; five of which were known and four were new variants. Of these nine variants, two were common tag single nucleotide polymorphisms (SNPs) and seven were rare SNPs. Both exonic substitutions were missense mutations and caused an amino acid change. There was a significant association between the new missense mutation (variant Chr.1:16119226, Ala98Pro) and HDL-C level.

Conclusion:

None of two common tag SNPs of rs6413453 and rs5082 contributes to the HDL-C trait in Iranian population, but a new missense mutation in APOA2 in our population has a significant association with HDL-C.  相似文献   

20.

Background  

Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO2 concentrations (370, 600, and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates (Hydrobia ulvae, Corophium volutator and Hediste diversicolor) in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号