首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Leaf and crown morphology of shade-tolerant sugar maple (Acer saccharum Marsh.) were examined to test the hypotheses (1) that leaf area exhibits significant plasticity both within and between crown classes and individual tree crowns and (2) that leaf area is accurately predicted from estimates of crown volume. A total of 18 trees, ranging from 3.3 to 43.4 cm dbh, were felled and dissected into upper, middle, lower, and below-crown layers, for measurements of leaf, bark, and xylem dimensions. For dominant trees only, bark thickness and xylem radii were higher within the crown than below the crown. Cumulative leaf area index increased with decreasing stratum height at similar rates in all trees, except for two trees that were located in the understory. Area leaf weight declined with decreasing stratum height within the crown of all except four overstory trees. These four trees showed an increase with decreasing stratum height, i.e., leaves were heavier per unit area in the lower crown stratum and below the crown than they were at mid-crown. Within-tree leaf area density was usually higher in the upper crown of overstory trees and in the lower crown of understory trees. Total crown volume was the best predictor of whole-tree leaf area, but it was only slightly better than dbh.  相似文献   

2.
Forest floor characteristics influence nutrient cycling and energy flow properties of forest ecosystems, and determine quality of habitat for many forest plants and animals. Differential crown recession and crown development among stands of differing density suggest that an opportunity may exist to control the input of fine woody litter into the system by manipulating stand density. The objective was to measure the rate of branch mortality among stands of differing density and to estimate the range in total per hectare necromass inputs. Although litter traps are reliable for estimating per hectare rates of litterfall, branch mortality dating on sectioned stems uniquely allows assessment of several other litterfall components: (1) individual tree contributions to total litterfall; (2) the amount of branch material released by mortality, regardless of whether the branches are shed to the forest floor; (3) the distribution of basal diameters characterizing the litterfall from a given tree and stand. Twenty-four trees were felled and sectioned on permanent plots that were part of a silvicultural study of stand density regimes in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco.). Whorl branches were dissected out of bole sections to determine the dates of mortality, and a branch biomass equation was applied to estimate potential rate of litterfall. Periodic annual rates were expressed in four ways: (1) number of branches per tree; (2) mass of branches per tree; (3) mass of branches per unit of crown projection area; (4) mass of branches per hectare. For the growth periods investigated, larger trees and trees growing on denser plots tended to release a greater necromass through branch mortality. Average branch basal diameter generally decreased with increasing stand density. Annual branch mortality ranged from 33 to 430 g m−2 crown projection area for individual trees, and from 236 to 1035 kg ha−1 for individual plots. These rates approached the low end of the range of previously published fine litterfall rates for Douglas-fir. Rates on these plots were relatively low owing to the temporary delay in crown recession imposed by artificial thinning. A conceptual model of branch litter dynamics is presented to depict consistencies with crown development among stands managed under different density regimes.  相似文献   

3.
Establishing the competitive relationships at the local neighbourhood level is essential for improving our understanding of tree growth dynamics in structurally heterogeneous and species-rich forests. We studied the competitive interactions influencing individual-tree five-year radial growth of the two species Castanopsis fargesii (Franch.) and Quercus fabri (Hance) in a diverse young secondary evergreen broad-leaved forest (EBLF) in eastern China. Different spatially explicit individual-based competition indices were examined for their effectiveness at predicting radial growth. These indices were based on one of the three tree size variables - diameter at breast height (dbh), total height, and crown projection area - and were combined with different approaches to identify potential competitors. Furthermore, we tested for competitive equivalence of conspecific and heterospecific neighbours and analysed the effects of local diversity, initial dbh (measured at the beginning of the five-year growth period) and abiotic environmental variables on individual-tree radial growth. Competition accounted for up to 78% and 75% of radial growth variation in C. fargesii and Q. fabri, respectively. The best results were provided by competition indices using crown projection area as the variable describing tree size and the angular height method as the approach to identify potential competitors (i.e. neighbours greater than the minimum angular height, measured from the base of the target trees, are selected as competitors). Competitive equivalence of conspecific and heterospecific neighbours was found in C. fargesii, whereas heterospecifics were stronger competitors than conspecifics in Q. fabri. We could not detect diversity effects on radial growth. The addition of initial dbh or abiotic environmental variables as further explanatory variables failed to improve the predictive ability of growth models. Our results indicate that diameter growth in this EBLF is largely a function of local neighbourhood competition and suggest that the mode of competition is primarily size-asymmetric. It appears that there may be high competitive equivalence among different species, but this remains to be experimentally tested.  相似文献   

4.
  • ? Studies of allometric relationships between leaf area and the cross-sectional area (CSA) of sapwood in the stem have shed light on the structural and functional relationships between water-conducting and photosynthetic tissues.
  • ? The purpose of this study was to test whether sapwood-leaf area relationships could be extended from stems to roots in coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco). Twelve trees were felled, their stumps were excavated, and the CSA of sapwood and heartwood were estimated for individual roots, entire root systems, and stem section.
  • ? Root sapwood CSA was greater than sapwood CSA throughout the stem, and the ratio of leaf area to sapwood CSA (A l :A s ) was accordingly lower for root sapwood. The relationship between sapwood CSA and leaf area was more variable in roots and at groundline compared to crown base. Root A l :A s decreased with relative tree height (tree height/mean stand height).
  • ? The strong allometric relationship between leaf area and the CSA of sapwood in the stem generally holds when extended to roots. The greater CSA of sapwood in roots versus stems may reflect differences in their roles in supporting the tree.
  •   相似文献   

    5.
    Water stress and fire disturbance can directly impact stand structure, biomass and composition by causing mortality and influencing competitive interactions among trees. However, open eucalypt forests of southwest Australia are highly resilient to fire and drought and may respond differently to increased fire frequency and aridity than forests dominated by non-eucalypt species. We measured the variation in stem density, basal area, stand biomass, sapwood area, leaf area and litterfall across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands along an aridity gradient in southwest Australia that had variable fire histories. Fire frequency was defined as the total number of fires over a ∼30-year period and aridity as the ratio of potential evapotranspiration to annual precipitation. Total stand biomass and sapwood area were predicted from diameter at breast height of individual jarrah and marri trees using allometric equations. Leaf area was estimated using digital cover photography. More arid and frequently burnt stands had higher stem density, especially of smaller trees, which were mainly jarrah. Overall, both standing biomass and leaf area decreased at more arid sites, while sapwood area was largely unaffected by aridity, suggesting that these stands respond to increased water limitation by decreasing their leaf area relative to their sapwood area. Biomass of marri was reduced at more arid and, to a lesser extent, at more frequently burnt stands. However, total stand biomass (jarrah and marri) and leaf area index did not vary with fire frequency, suggesting that less marri biomass (due to slower growth rates, higher mortality or less recruitment) was compensated by an increase in the density of jarrah trees (regeneration). We conclude that increased fire and drought shift tree species composition towards more fire-resistant species and result in denser stands of smaller trees. In contrast, total stand biomass declines with increasing aridity, but has no association with fire frequency.  相似文献   

    6.
    Few tree size/leaf area correlations have been produced for hardwoods, where the extrapolation from individual branches to the whole tree is less straightforward than in conifers with more regular branching patterns. We used randomized branch sampling to estimate leaf area of European beech (Fagus sylvatica L.) trees of different stands, ages and areas in Austria. Cross-sectional areas (CSA) predicted 87–92% of leaf area variation, the best predictor being the sum of branch CSA. Leaf area was somewhat better correlated with CSA at breast height than at the base of the crown, and using sapwood instead of total CSA made little difference. While there was no effect of growth area, a stepwise regression model showed that dominant trees in pole-stage had, for unclear reasons, significantly higher leaf area/CSA relationships. A comparison with regressions produced from smaller beech trees in other parts of Europe suggests that the leaf area/basal area regression is generally valid for beech in central Europe.  相似文献   

    7.
    Trees are able to respond to their local biotic and abiotic environment with morphological adjustments which improve resource acquisition and, thus, growth. In forests, light is broadly recognised as one of the major factors determining growth, and morphological responses comprise changes in crown architecture and stem stature. On sloping terrain, the interplay of phototropism and gravitropism may further affect morphological growth characteristics. However, different tree species are expected to show species-specific responses. In this study, we analysed three growth characteristics of tree individuals belonging to four species of two functional groups (evergreen: Schima superba, Castanopsis eyrei, deciduous: Quercus serrata var. brevipetiolata, Castanea henryi) in a species-rich Chinese subtropical forest. Crown projection area, relative crown displacement and stem inclination were related to biotic (local species richness, functional richness, competition, stand age) and abiotic (slope aspect and inclination, soil depth) variables in the local neighbourhood of the tree individuals. We hypothesised that (i) there are species-specific differences in the morphological response of crown architecture and stem stature and (ii) that crown size and asymmetry as well as stem inclination are influenced by both, biotic and abiotic factors. In contrast to our expectations we were unable to reveal any species-specific differences in any of the three growth characteristics. The results of mixed effects models showed that crown area was mainly affected by the target tree's dbh and biotic variables related to neighbours (competition, functional diversity), whereas stem inclination was mainly influenced by slope. Relative crown displacement was influenced by both, biotic and abiotic variables. We conclude that growth responses resulting in crown displacement and stem inclination seem to be an important mechanism to ameliorate foraging for light in our study area, but that these responses appear to be species-independent. The interplay of stem inclination and crown displacement allows for a plastic response of tree individuals in biotically and abiotically heterogeneous environments. Our results indicate that forest management in this region should focus on functionally diverse stands which are promoting crown area positively resulting in increased growth rates of individual trees.  相似文献   

    8.
    Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.  相似文献   

    9.
    Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.  相似文献   

    10.
    华北落叶松边材透水性与叶面积空间分布的相关性的探讨   总被引:2,自引:0,他引:2  
    对华北落叶松林单木累积叶面积、树干边材面积、树干边材透水率及透水量的垂直分布规律及其相互关系进行了探讨。研究表明,引入树干边材面积与边材透水率的积可明显提高估测树冠叶面积垂直分布的精度,进而为精确估测林分的叶面积空间分布提供了新途径。  相似文献   

    11.
    Leaf area is commonly estimated as a function of sapwood area. However, because sapwood changes to heartwood over time, it has not previously been possible to reconstruct either the sapwood area or the leaf area of older trees into the past. In this study, we report a method for reconstructing the development of the sapwood area of dominant and codominant balsam fir (Abies balsamea (L.) Mill.). The technique is based on establishing a species-specific relationship between the number of annual growth rings in the sapwood area and tree age. Because the number of annual growth rings in the sapwood of balsam fir at a given age was found to be independent of site quality and stand density, the number of rings in sapwood (NRS) can be predicted from the age of a tree thus: NRS = 14.818 (1 - e(-0.031 age)), unweighted R(2) = 0.80, and NRS = 2.490 (1 - e(-0.038 age)), unweighted R(2) = 0.64, for measurements at breast height and at the base of the live crown, respectively. These nonlinear asymptotic regression models based only on age, were not improved by adding other tree variables such as diameter at breast height, diameter at the base of the live crown, total tree height or percent live crown.  相似文献   

    12.
    Abstract

    This study focused on the amount of sapwood and its variation by means of computed tomographic (CT) imaging. Twenty-four trees were selected from four Norway spruce [Picea abies (L.) Karst.] stands in north-eastern France, varying in age, density and fertility. In each stand, sampled trees represented the dominant, co-dominant and suppressed strata. The heartwood/sapwood boundary was detected from the CT images, and the heartwood and sapwood amount and their variations were then evaluated. At the within-tree level sapwood width was relatively constant along the tree stem above the butt swelling and below the living crown. The between-tree sapwood width variations were partially explained by the total cross-sectional area of living branches. This result opens up the possibility of investigating within-tree allometric relationships. Sapwood width was found to be highly correlated with tree slendemess (tree height/breast height diameter) and with the relative height of the crown. This suggests that sapwood width could be readily predicted from conventional forest inventory measurements. The number of sapwood rings within the stem was largely dependent on cambial age, and could be determined dynamically using the concept of mean lifetime of sapwood rings.  相似文献   

    13.
    Stem sapwood hydraulic permeability, tree leaf area, sapwood basal area, earlywood to latewood ratio of annual rings, radial variation in hydraulic permeability and stem hydraulic capacity were examined in dominant (D), codominant (CD) and suppressed (SP) lodgepole pine (Pinus contorta Dougl. ex Loud.) trees growing on medium and poor sites. Hydraulic permeability on a sapwood area basis (ks) was lower in suppressed trees (0.71 x 10(-12) m2) compared to dominants (1.97 x 10(-12) m2) and codominants (1.79 x 10(-12) m2), and higher on medium than on poor sites. The leaf/sapwood area ratio (S) varied with crown dominance position (D > CD > SP) but not by site type. Leaf specific conductivity (kL) did not vary between crown classes or site types. The relationship between leaf area and stem hydraulic supply capacity (Q*) was strong, but differed among crown classes. Dominant trees and trees from the medium sites had a greater proportion of earlywood in outer rings of sapwood than suppressed trees. Sapwood permeability declined from the cambium to the sapwood-heartwood boundary in all samples, but the decline was more gradual in dominant trees compared to codominant and suppressed trees; differences in the radial variation in sapwood permeability may be related to differences in S. Sapwood permeability is positively related to crown dominance, whereas subdominant (CD and SP) trees have greater Q* in relation to leaf area, leading us to propose that this may give subdominant trees a survival advantage, slowing self-thinning.  相似文献   

    14.
    Crown shyness or canopy disengagement, the phenomenon wherein gaps around trees develop from swaying, whipping and shading, has been identified in the literature since the 1920s. Recent results by researchers at the University of Alberta have clearly described many of the processes involved for lodgepole pine [e.g. Rudnicki, M., Silins, U., Lieffers, V.J., Josi, G., 2001. Measure of simultaneous tree sways and estimation of crown interactions among a group of trees. Trees 15, 83–90; Rudnicki, M., Lieffers, V.J., Silins, U., 2003. Stand structure governs the crown collisions of lodgepole pine, Canadian Journal of Forestry Research 33, 1238–1244; Rudnicki, M., Silins, U., Lieffers, V.J., 2004. Crown cover is correlated with relative density, tree slenderness, and tree height in lodgepole pine. Forest Science 50, 356–363; Fish, H., Lieffers, V.J., Silins, U., Hall, R.J., 2006. Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta. Canadian Journal of Forestry Research 9, 2104–2111]. However, explicit models of crown shyness are sparse in the literature. This paper describes the development of empirical models of crown shyness in lodgepole pine for British Columbia (BC). We measured crown area and neighbour locations on 60 trees growing in 13 stands in central BC. We estimated potential crown area (AV) using stem maps and Voronoi polygons constrained by estimates of maximum crown width, and then related observed crown area (AC) to AV and additional individual tree variables. One of the nine prediction equations was coded into a spatially explicit tree growth model modified to evaluate the effects of crown shyness at the stand level. Crown shyness models validated well against two independent sources and when linked with a light model tRAYci [Brunner, A., 1998. A light model for spatially explicit forest stand models. Forest Ecology and Management 107, 19–46], increased the below-canopy light by 0.07–0.11.  相似文献   

    15.
    Trembling aspen (Populus tremuloides Michx.) from 14 aspen stands ranging in age from 5 to 142 years were destructively sampled to provide branch, crown and bole growth information. Analysis of crown development processes such as branch angle, branch extensional growth, branch crookedness and annual height growth suggested a significant increase in relative branch growth with height and age which was linked to the temporal decline of height growth. Crown class dependent crown length (%) and crown area relationships were observed indicating crown size followed the sequence: open grown trees > dominants > suppressed trees. A significant shift in crown development from vertical to lateral crown expansion was observed as aspen mature.  相似文献   

    16.
    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.  相似文献   

    17.
    In the 1970s, public opposition to clearcut harvesting in hardwood forests of the eastern United States led forest managers and scientists to consider alternative practices that retain a low-density overstory forest cover. From 1979 to 1984, a form of clearcut-with-reserves harvesting was applied in 80-year-old Appalachian mixed-hardwoods to create four experimental stands with two-aged structures. The residual stand basal area averaged 5.3 m2/ha, comprising an average of 36 reserve trees/ha. The reserve trees were evenly distributed throughout the stand, initially with considerable space between their crowns, thus providing the sunlight and seedbed conditions needed to recruit desirable shade-intolerant reproduction after harvest. This study examined the response of the 100-year-old reserve trees and the development of the 20-year-old natural reproduction located in their immediate vicinity.Diameter at breast height (Dbh), height, and relative position were recorded for all reproduction ≥2.5 cm within transects adjacent to northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) reserve trees. Each transect was divided into five zones, which represented positions relative to the reserve tree crown edge, and basal area was computed for each of three shade tolerance classes within each zone. A repeated measures ANOVA was used to compare basal area of reproduction by tolerance classes and zone. In general, basal area of reproduction, particularly that of shade-intolerant species, increased with distance from the reserve tree. Regression analyses also indicated that dbh and height of reproduction was positively related to distance from the reserve trees. Although height growth of reserve trees was similar for both species, northern red oak exhibited significantly greater dbh and crown radial growth than yellow-poplar.The results indicated that reserve trees influence the growth rate and species composition of reproduction in their immediate vicinity. Basal area of reproduction increased from 10.1 to 17.7 m2/ha with increasing distance from the reserve trees. Basal area of intolerant species more than doubled along the same gradient. Basal area of reproduction in the two-age stands was 30–40% less than that observed in even-aged stands on similar growing sites, but the reduction was offset by growth of the reserve trees. The surface area covered by the reserve tree crowns increased approximately 88% for northern red oak and 44% for yellow-poplar. Since the sphere of influence of reserve trees increases over time, forest managers must consider their long-term impact on reproduction when prescribing clearcut-with-reserves harvests and other practices that involve retaining trees for many years.  相似文献   

    18.
    Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

    19.
    The crown profile, volume, and surface area obtained from 25 trees in a stand of 29-year-old Japanese cypress (Chamaecyparis obtusa Endl.) using a Spiegel relascope were compared with those obtained by direct measurement after tree felling. In 17 of the 25 trees, the crown profile measured with the relascope was identical to the crown profile obtained by direct measurement. For the 17 trees, the mean relative errors of crown volume and surface area tended to be unbiased. On the other hand, the crown profiles obtained by the two methods were different in five of the 25 trees, while it could not been judged whether the crown profiles obtained by the two methods were identical or different in three of the 25 trees. However, for each group of five or three trees, the mean relative errors of crown volume and surface area were also unbiased. Moreover, for both crown volume and surface area, no significant differences were detected in variance of error among the groups of 17, five, and three trees. Therefore, the discrepancy between crown profiles obtained by the two methods for the five and three trees might be negligible in terms of the accuracy and precision of crown volume and surface area measurements. The standard errors for both crown volume and surface area were larger in each of the five and three trees than in the 17 trees. However, even for the five and three trees, the crown volume and surface area obtained using the relascope were more precise than those based on the assumption that crown form was a cone or paraboloid. We concluded that using a Spiegel relascope would enable us to obtain an accurate and precise crown profile, volume, and surface area of Japanese cypress trees for practical use, especially when the main objective of measurement is determining crown volume or surface area.  相似文献   

    20.
    Crown dimensions are important for the quantification of tree interactions in some growth models. This study investigates the potential for structural indices and other spatial measures to improve the prediction of crown radius and crown length for birch (Betula spp.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in forests in Wales. Crown dimensions were measured for 125 birch and 154 spruce in six fully stem-mapped research plots. These data were used to test the performance of a crown radius model and a crown length model which estimated crown dimensions on the basis of allometric relationships with stem dimensions. Spatial data from the six plots were used to calculate the structural indices mean directional index, diameter correlation index, species mingling, dbh and height dominance, and dbh differentiation, as well as the Hegyi competition index, and basal area of neighbours and larger neighbours, for each crown measurement sample tree, using various numbers of nearest neighbours. Two non-spatial indices, BAL and BALMOD, were also calculated for all sample trees for comparison. These spatial and non-spatial variables were then incorporated into modified crown dimension models. Model performances, in terms of efficiency and relative bias, were compared to determine whether the inclusion of spatial or non-spatial variables resulted in any improvements over models using tree dimensions alone. Crown length and radius were found to be correlated with most of the spatial measures studied. Models incorporating spatial variables gave improvements in performance over allometric models for every data set, and performed more consistently than models containing non-spatial variables. The greatest improvements were achieved for suppressed birch in unthinned forests which had irregularly shaped and strongly displaced crowns. The spatial variable contributing to the most efficient model for each data set varied widely. This points to the complexity of tree spatial interactions and indicates that there is a great deal of scope for investigating other structural indices and crown dimension model forms.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号