首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
液压机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。它是利用帕斯卡定律制成的利用液体压强传动的机械和用来传递能量以实现各种工艺的机器。现在液压机不仅可用于锻压成形,也可用于压装、压块、压板、打包和矫正等工艺。比较常见的工艺有压制工艺和压制成形工艺,比如:冲压、锻压、翻边、弯曲、压装、冷挤、校直、粉末冶金、薄板拉深等。  相似文献   

2.
液压机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。它是利用帕斯卡定律制成的利用液体压强传动的机械和用来传递能量以实现各种工艺的机器。现在液压机不仅可用于锻压成形,也可用于压装、压块、压板、打包和矫正等工艺。比较常见的工艺有压制工艺和压制成形工艺,比如:冲压、锻压、翻边、弯曲、压装、冷挤、校直、粉末冶金、薄板拉深等。  相似文献   

3.
针对大型喷雾机喷杆钟摆式主被动悬架系统存在的参数不确定性和随机干扰导致控制精度低、稳定性差的问题,对基于模型补偿的自适应鲁棒控制算法进行研究。建立了钟摆式主被动悬架的非线性动力学模型和调节机构几何方程,基于模型设计了自适应鲁棒控制器,综合悬架系统和电液位置伺服系统模型中存在的参数不确定性,同时兼顾系统未补偿的摩擦力和外部扰动等不确定非线性因素,通过理论分析和试验证明,在同时存在模型参数不确定和不确定非线性的情况下,设计的控制器可以保证系统输出跟踪控制的暂态性能和稳态精度。以单出杆液压作动器驱动的28m大型喷杆主被动悬架为例,借助建立的大型喷杆悬架半实物仿真平台进行了控制算法的试验验证,并使用Stewart六自由度运动平台模拟底盘的运动干扰,与反馈线性化控制器、鲁棒反馈控制器、PID控制器进行了试验对比,结果表明,设计的基于模型补偿的自适应鲁棒控制器最大跟踪误差0.148°,而反馈线性化控制器最大跟踪误差0.201°,鲁棒反馈控制器最大跟踪误差0.51°,PID控制器最大跟踪误差0.48°。设计的控制器在同时存在参数不确定性和扰动的情况下,使用较小的反馈增益能够保证渐进跟踪性能和稳态跟踪精度。  相似文献   

4.
针对负载质量和负载力等参数不确定的主动悬挂电液伺服作动器位置控制系统,采用内模控制方法对其进行位置控制。根据系统特性建立了电液伺服作动器位置控制系统线性化数学模型,并基于此模型设计了内模控制器。为验证内模控制器的控制效果,进行了与PID控制的对比仿真分析和台架试验。以阶跃信号为输入信号进行了仿真分析,仿真结果表明,系统在内模控制下的单位阶跃响应快速、平稳、无超调,动态特性优于PID控制,且当系统受到外部干扰时,内模控制比PID控制能更快速、平稳地恢复至稳态值。台架试验包括改变正弦输入信号频率和改变负载质量两种试验方案。结果表明,当正弦输入信号频率由0.1Hz增加至2Hz时,基于PID控制的系统跟踪性能明显恶化,而基于内模控制的系统跟踪性能并无明显变化;当负载质量发生变化时,基于内模控制的系统跟踪误差变化幅度明显小于PID控制。基于内模控制的电液伺服作动器位置控制系统的跟踪响应性能优于PID控制,满足主动悬挂系统的使用要求。  相似文献   

5.
针对传统电液控制系统单一工作模式能耗高、效率低等问题,提出了一种负载口独立多模式切换控制系统。该系统基于负载口独立控制,通过改变传统液压回路连接方式,为系统拓展多种节能工作模式并设计了多模式切换控制器。该控制器首先根据负载方向和速度方向,将系统切换至能量最优的工作模式;然后再根据工作模式为执行器进、出口配置最佳阀控策略,而泵控方式采用电液负载敏感方法使系统压力适应负载压力。为验证该系统在出口压力损失和能量再生两方面的节能效果,以传统电液负载敏感系统为对比对象,在小型挖掘机上进行了实验验证,并评估能效。实验结果证明,与传统电液负载敏感系统相比,采用负载口独立多模式切换控制方法在不降低运动跟踪性能的同时,能有效提高系统的能量效率,节能率达21.95%。  相似文献   

6.
由于电液位置控制系统存在严重的非线性、内部参数的时变性以及外负载的干扰性,严重影响了系统静、动态控制效果。为此,提出了一种基于负载力补偿的自抗扰复合控制方法。给出了复合控制策略的工作原理;设计了自抗扰控制器,利用扩张状态观测器来观测和补偿系统内部参数和外部负载力的不确定性,从而有效地抑制了内部扰动和外部扰动对系统的影响;设计了负载力补偿控制器并导出负载力的补偿模型,进一步削弱了外负载变化对系统的不良影响,同时提高了系统的位置控制精度。通过Matlab仿真和半物理仿真平台分别进行了复合控制策略的验证。仿真及实验结果表明:自抗扰控制器有效地抑制了内外扰动的干扰,而负载力补偿控制器的引入使系统在抑制了外负载力摄动的同时实现了位置的精确定位控制,验证了所提控制策略的有效性。  相似文献   

7.
针对重型车辆电液复合转向系统(Electro hydraulic hybrid steering system,EHHS)无人驾驶模式下的转向跟踪控制问题,首先建立了考虑EHHS系统参数不确定性及外界干扰影响的转向系统完整非线性动力学模型;然后提出了一种自适应双闭环转向跟踪控制策略,外控制环设计参数自适应率,以有效适应模型参数摄动,采用改进滑模控制计算期望转向力矩,内控制环则利用PI控制转向电机电流,实现对期望转向力矩跟踪;最后利用Matlab/Simulink对EHHS系统模型以及提出的控制策略进行仿真验证。结果表明,提出的自适应控制可有效缩短EHHS系统转角跟踪阶跃响应反应时间,降低转向轮角度跟踪误差,并保证转角跟踪精度不受系统参数摄动的影响,有效提高了EHHS系统无人驾驶模式下的转向跟踪控制性能。  相似文献   

8.
针对丘陵山地拖拉机电液悬挂控制系统田间试验困难、可重复性差等问题,基于半实物仿真技术开展电液悬挂控制系统试验研究。首先通过对试验拖拉机和悬挂作业装置进行受力分析,建立了丘陵山地拖拉机整机动力学模型、铧犁体的土壤阻力模型和拖拉机悬挂装置动力学模型。然后对丘陵山地拖拉机电液悬挂系统横向仿形控制、位控制、牵引力控制以及力位综合控制的系统原理进行了分析,设计了丘陵山地拖拉机电液悬挂模糊PID控制器。之后搭建拖拉机电液悬挂控制系统半实物仿真试验平台,开发电液悬挂控制系统,开展电液悬挂系统仿地形控制、力控制、位控制和力位综合控制等试验,对比分析模糊PID控制和经典PID控制方法性能。试验结果表明,模糊PID控制性能较好:在位置控制模式下,模糊PID控制无超调,控制系统响应时间为0.6s,较经典PID控制提高约33.3%;耕深控制系统稳态误差约为0.05cm,较经典PID控制降低约50%;在力控制模式下,模糊PID控制耕深的跟随误差最大值为0.38cm,标准差为0.17cm,较经典PID控制分别下降了64.5%、39.3%,验证了所开发的电液悬挂控制系统的有效性。  相似文献   

9.
面向植保机械喷杆位置调节作业的需要,选取电液伺服系统作为其调节装置,提出一种基于模糊控制的控制方法。首先,将电液伺服系统中的未知项、非线性项等进行完整的数学建模;然后,以输出量与给定量的误差及其变化率作为模糊控制器的输入信号,伺服阀的控制电流为输出信号,建立模糊控制系统,实现了对电液伺服系统中不确定项与非线性项的控制;最后,搭建Mat Lab仿真平台进行仿真,同时作为对比设计了PID算法。结果表明:所设计的模糊控制器具有良好的跟踪性能,对系统的不确定性和振动具有良好的控制效果。  相似文献   

10.
机械臂具有时变、强耦合、非线性等特性,因此建立动力学模型计算量很大,耗时长且难以实现有效的实时控制。针对机械臂在控制中存在的精度问题,采用Lagrange方法进行动力学建模,在该模型的基础上设计了滑模控制器,对动力学模型进行仿真分析。并与传统的基于重力补偿的机械臂PD控制方法在轨迹跟踪的精度和误差方面进行比较。结果表明:所设计的滑模控制器比PD控制算法具有更高的轨迹跟踪精度及更快的跟踪速度,更适合机械臂轨迹跟踪控制。  相似文献   

11.
直驱并联机构六自由度振动校准系统可以实现高精度和多自由度的运动模拟和校准,具有良好的应用前景。为了解决平台驱动关节滑块位置跟踪精度低的问题,对该机构进行动力学力矩前馈补偿分析。利用虚功原理建立该机构动力学模型,提出一种基本伺服算法与动力学前馈补偿相结合的控制策略。在实验样机上进行力矩前馈补偿,实验结果表明,在开放伺服程序增加力矩前馈补偿后,可以降低该机构在运动时的跟随误差,进行不同幅值单自由度正弦运动时,跟随误差分别下降40.32%、39.04%、43.24%、48.19%。并对振动台进行了性能检测,在平台基础上,搭建激光测量系统和数据采集模块,进行传感器校准和性能分析,平台横向振动比较小,谐波失真度均小于2%,平台具有较好的稳定性和性能。  相似文献   

12.
为了实现电气离合器执行系统的位置伺服控制,构建了离合器气动执行系统。通过运用引入死区的滑模控制算法于系统,采用不基于模型的控制实现离合器气动执行系统对参考运动轨迹的跟踪,利用轨迹跟踪过程中气缸的气压驱动力间接估计离合器的载荷特性。理论上采用此方法间接估计到的值误差小,更加贴近离合器在此种轨迹运动下实际的载荷特性。试验表明引入估计得到的离合器载荷特性模型于基于模型的积分滑模控制器可以很大程度提高离合器气动执行系统轨迹跟踪精度。  相似文献   

13.
基于RBF神经网络的混合输入机构自适应控制   总被引:1,自引:0,他引:1  
提出一种伺服电动机对常速电动机运动进行闭环跟踪的控制策略,控制伺服电动机的运动,以实现对常速电动机速度波动的补偿.由于系统精确模型难以获得,设计了基于名义模型的径向基函数网络自适应控制器,进行混合输入机构轨迹的跟踪,应用径向基函数(RBF)神经网络对系统中摩擦、外部扰动和动力耦合等不确定因素的和进行逼近,网络输出权值由自适应算法学习确定,并对该控制器进行稳定性分析.仿真结果表明,所设计的控制器稳定有效, 具有较强的鲁棒性.  相似文献   

14.
现有的自动泊车系统研究,由于忽略实际车辆转向约束和初始位姿条件而影响实际车辆跟踪参考路径效果,本文提出基于B样条曲线的路径规划算法和基于趋近律的非时间参考终端滑模路径跟踪控制算法。首先,对车辆的运动过程进行研究,建立车辆的运动学模型。其次,基于B样条曲线理论建立非线性约束平行泊车路径优化函数,并分析车辆运动学约束条件。然后,结合非时间参考路径跟踪控制和终端滑模控制方法,提出基于趋近律的非时间参考终端滑模路径跟踪控制方法。最后,通过Simulink和Car Sim联合仿真,验证了规划路径的合理性以及路径跟踪控制器的效果。  相似文献   

15.
为获得筑埂作业时土壤对其关键部件镇压筑埂装置的作用力,以1DSZ-350型悬挂式水田单侧旋耕镇压修筑埂机筑埂装置为研究载体,采用应变传感器设计了镇压筑埂装置动力学参数测试系统,并搭建动力学测试试验台。对镇压筑埂装置的工作参数进行测试,以镇压筑埂装置前进速度和转速为试验因素,以田埂成型过程中土壤对弹性羽片作用力和田埂坚实度为性能指标进行单因素试验,获得弹性羽片受土壤作用力、田埂坚实度与镇压筑埂装置前进速度、转速之间的关系。试验结果表明:当镇压筑埂装置转速一定时,随着机具前进速度的增加,土壤对弹性羽片作用力平均值增大,田埂坚实度减小,变化范围分别为:2 838.1~5 695.2 N和2 250~1 680 kPa;当机具前进速度一定时,随着镇压筑埂装置转速的增加,土壤对弹性羽片的作用力平均值与所筑田埂坚实度均增大,变化范围分别为:3 203.8~5 990.3 N和1 460~2 180 kPa。经试验验证,工作参数测试系统的设计符合实际要求,为类似结构装置的相关参数测试提供了参考。  相似文献   

16.
针对基于高速开关阀的气动人工肌肉位置伺服控制系统的非线性与时变性,设计了基于气动人工肌肉实验模型的PID反馈控制器,实现气动人工肌肉的高精度运动轨迹跟踪控制。首先,通过实验建模得到气动人工肌肉静态特性的实验模型,然后基于理想气体多变方程,建立可有效描述气动人工肌肉动态特性的数学模型,利用Sanville流量公式建立流经高速开关阀阀口的气体流量方程,并采用脉冲信号调制法生成PWM信号,进而控制高速开关阀占空比。在此基础上,借助PID反馈控制器建立气动人工肌肉气压与轨迹跟踪的控制模型,并采用Simulink对所提出的气压和轨迹跟踪控制方法进行数值仿真。结果表明,所建立的控制模型能够精确地跟踪期望气压和运动轨迹,从而验证了控制模型和控制方案的精确性和可行性,为实现气动人工肌肉高精度轨迹跟踪控制提供了有效手段。  相似文献   

17.
农业机械(农机)运动学模型的精度影响导航控制精度和稳定性,为提高农机路径跟踪控制器精度,提出了一种基于运动特性的农机导航控制器设计方法。该方法主要是对传统二轮车运动学模型建模方法进行改进,针对传统二轮车模型小角度近似替代(方向角等于横摆角)的缺点,采用加入侧偏角的方法优化农机运动学建模过程。采用相同的控制方法(状态反馈控制)和不同的运动学模型设计控制器进行对照实验。直线路径跟踪时,侧偏角对模型精度影响较小,引入侧偏角可以在一定程度上影响农机的跟踪精度;曲线路径跟踪时,侧偏角对方向角的变化影响较大,可以大幅影响路径跟踪精度。以安装有自动导航设备的拖拉机为实验平台进行实地实验,结果表明:直线行驶的最大横向误差平均值为0.0454m,绝对平均误差平均值为0.0149m,标准差平均值为0.0119m;曲线行驶的最大横向误差平均值为0.1613m,绝对平均误差平均值为0.0688m,标准差平均值为0.0434m;基于本文提出的优化模型设计的路径跟踪控制器对直线路径跟踪有一定提升,对曲线跟踪精度有大幅提升。  相似文献   

18.
刘雪珂  王斐  蒋林 《农机化研究》2017,(10):246-250
以东风1204拖拉机为原型,通过分析拖拉机自动导航与车道偏离预警系统(LDWS)的异同,以LDWS转向控制模型为基础,推导出拖拉机动力学模型。通过分析液压转向机构工作原理,制定了液压自动转向机构的改装方案,并利用Sim Hydraulics工具箱搭建了液压自动转向系统模型,且基于此转向模型设计了自动导航拖拉机液压转向系统模糊控制器,在Mat Lab/Simulink中进行仿真试验。结果表明:所设计的转向系统模糊控制器具有良好的转向跟踪精度,其最大跟踪误差小于1°,控制效果良好。  相似文献   

19.
丘陵果园除草机器人底盘系统设计与试验   总被引:1,自引:0,他引:1  
针对丘陵果园环境非结构化且复杂多变,常规的除草方式效率低等问题,设计了一种果园除草机器人底盘系统。根据果园丘陵地形地貌环境,确定车体控制方式和除草机器人底盘的总体结构方案,主要包括液压传动系统、电气控制系统等。设计配套的除草车电气控制系统和遥控接收、车载主控和导航功能的CAN通信协议。以运动控制为核心,采用角度传感器、电机驱动、车载主控、导航模块,构成闭环控制。使用自抗扰控制算法,以油阀控制电机为对象应用Simulink仿真,仿真结果显示自抗扰控制相比PID控制调节时间减少0.42s,超调幅度减小11.5%,稳定时间缩短0.14s。田间试验表明,运用自抗扰控制、结合导航功能的除草机器人行走速度均值为6.2km/h,均方差0.037km/h,作业效率0.51hm2/h,有效除草率均值97.46%,可在25°斜面上正常行走,对导航路径的跟踪误差标准差为4.732cm,运动控制响应及时,能够提高除草作业安全性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号