首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
通过对坡面侵蚀过程进行分段观测,获得不同侵蚀阶段的坡面侵蚀沟形态三维扫描数据,分析不同阶段的侵蚀沟道宽、深变化情况,对坡面侵蚀沟道由细沟到浅沟的发育过程进行研究。研究结果表明,在降雨初期,侵蚀沟道的宽度明显大于深度,初期侵蚀沟横断面为宽浅形态;随着降雨历时的增加,侵蚀沟平均深度增加的速度快于平均宽度增加的速度。在细沟向浅沟的发展过程中,先出现宽度突破细沟上限(20 cm)的沟道,且所占比例随降雨历时增加而增加;深度大于20 cm的浅沟出现较晚。沟道发育过程中沟壁侵蚀速率较为稳定,沟底下切侵蚀随沟道深度的增加而减缓,导致在沟道发育过程中出现宽度超出细沟上限而深度达不到浅沟深度下限的过渡期沟道;由于径流主要集中于少数侵蚀沟中,绝大多数细沟不会发育成浅沟,这些细沟或者被吞并,或者长时间保持在缓慢的细沟发育阶段,只有极少数的细沟能够最终发育为浅沟,其最大占比仅为2.3%。浅沟出现后,坡面径流更多地汇集到浅沟,更多的侵蚀集中于浅沟的边壁侵蚀和下切侵蚀,坡面其他位置的细沟侵蚀减弱,造成总体侵蚀速度下降,坡面产沙量减少。  相似文献   

2.
黄土坡面细沟侵蚀及水动力学参数的时空变化特征   总被引:5,自引:0,他引:5  
坡面细沟侵蚀速率和水动力学参数在坡面细沟发育过程中存在明显的时空变化。基于间歇性人工模拟降雨和三维激光扫描技术提取的高精度DEM,分析了黄土坡面细沟发育不同主导过程中细沟侵蚀和水动力学参数的时空分布规律。结果表明,细沟侵蚀速率和总侵蚀速率的最大值出现在以细沟沟底下切侵蚀为主的细沟发育活跃期,最小值出现在以沟头溯源侵蚀为主的细沟发育初期。细沟侵蚀速率与总侵蚀速率随降雨历时的变化皆呈先上升后趋于稳定,并在一定范围内波动的变化趋势,且总侵蚀速率早于细沟侵蚀速率达到稳定。细沟侵蚀量随单位斜坡长呈先上升后下降的抛物线形式分布,细沟侵蚀速率的最大值出现在坡面中下部。90 mm/h降雨强度下径流剪切力、径流功率和单位径流功率分别是60 mm/h降雨强度下的1.3、1.1、1.4倍。细沟间水流和细沟流的水动力学参数随降雨历时的增加呈不同的变化趋势。两种降雨强度下,径流剪切力、径流功率和单位径流功率随单位坡长的分布均呈波动上升趋势。单宽细沟侵蚀量与水动力学参数之间呈线性正相关关系,细沟发育初期坡面侵蚀发生的临界径流剪切力、临界径流功率和临界单位径流功率最大。  相似文献   

3.
雨滴打击对黄土坡面细沟侵蚀特征的影响   总被引:6,自引:0,他引:6  
基于模拟降雨试验和纱网覆盖消除雨滴打击作用的试验方法,研究雨滴打击对黄土坡面细沟侵蚀特征的影响。试验包括3种黄土高原代表性的侵蚀性降雨强度(50、75、100 mm/h)和3个细沟侵蚀发生最常见的坡度(10°、15°和20°)。结果表明,与有雨滴打击试验处理相比,纱网覆盖消除雨滴打击后,坡面径流稳定产流率和含沙量均明显减小;坡面侵蚀量和细沟侵蚀量分别减少28.1%~47.7%和20.2%~38.6%;而细沟侵蚀对坡面侵蚀的贡献率增加。消除雨滴打击后,坡度对细沟侵蚀的影响与有雨滴打击时相同,而降雨强度对细沟侵蚀的影响增加。有、无雨滴打击试验处理的细沟密度和割裂度均随着降雨强度和坡度的增加而增大;而细沟倾斜度的变化较为复杂,所以细沟密度和割裂度可作为描述细沟形态的最佳指标。试验结果还表明,雨滴打击对细沟沟槽形状也有间接影响,即消除雨滴打击后,细沟宽度和深度的变异程度减小,沟槽形状更为规则。同时,有雨滴打击试验处理的细沟宽深比随着坡度和降雨强度的增加而减小,而无雨滴打击试验处理的细沟宽深比随着坡度的增加而减小,随着降雨强度的增加呈微弱的增加趋势。  相似文献   

4.
通过人工模拟降雨试验,选取2种坡度(15°,30°),2种降雨强度(92,119 mm/h)和6种砾石覆盖度(0,10%,20%,40%,60%,80%),探究砾石覆盖对海涂围垦区粉砂土坡面侵蚀及土壤可蚀性的影响.结果表明:随累积降雨量增加,土壤可蚀性参数先增大后减小,并趋于稳定.坡度对土壤可蚀性影响显著,坡度越陡,坡面土壤可蚀性越大.砾石覆盖度与土壤可蚀性参数并非呈单调关系.坡度较陡且低覆盖度时,砾石覆盖增加坡面侵蚀;而当高覆盖度时,砾石覆盖可降低坡面径流速率,增加入渗率,减小土壤侵蚀率.适当盖度砾石覆盖能够改变边坡表面粗糙程度,降低坡面土壤可蚀性.砾石覆盖坡面径流雷诺数与土壤可蚀性参数呈显著线性负相关关系.通过径流雷诺数与土壤可蚀性参数线性关系定量分析能够较好反映坡面高钠盐土颗粒输移水动力学过程,对于构建盐碱土边坡泥沙输移预测模型具有重要意义.  相似文献   

5.
设计了一个可用于坡面侵蚀过程研究的自动监测径流场,该径流场主要由6个径流小区和1套模拟降雨装置组成。采用德国UGT径流测量装置,实现地表径流的自动采样和记录。用设计的径流场对秸秆覆盖坡耕地的产流产沙过程进行了研究,结果表明相对于裸露地表,秸秆覆盖能明显降低各径流小区的产流率和产沙率,延缓产流增加趋势,减少产沙总量达54.5%~63.8%。因此,增加坡耕地土壤表面的秸秆覆盖量可有效避免产流在短时间内急剧增加,并能减少对土表的冲刷作用。  相似文献   

6.
我国沿海地区海涂资源丰富,但由于沿海降雨较多且海涂坡面土质松散,坡面极易产生降雨径流侵蚀,这导致海涂沟渠等工程坡面水土流失严重、淋洗困难。通过室内模拟降雨试验,研究在不同雨强下不同措施坡面的产流特性。结果表明:(1)不同措施坡面的初始产流时间均与降雨强度显著负相关,在50 mm/h雨强下,延缓坡面产流的效果依次为淋洗坑>淋洗沟>耐盐草被覆盖,在100、150 mm/h雨强下,延缓坡面产流的效果依次为淋洗沟>淋洗坑>耐盐草被覆盖。(2)不同措施坡面的产流过程具有同步性,在未发生坍塌时产流强度随细沟的发育而增加,待细沟发育成熟后产流趋于稳定,当坡面发生坍塌时产流强度短时间内激增后回落。试验对比发现,耐盐草被覆盖可以明显改善海涂坡面的稳定性。  相似文献   

7.
沟蚀过程研究进展   总被引:31,自引:0,他引:31  
从国内外沟蚀概念对比、沟蚀发生临界模型、沟蚀过程影响因素、沟蚀预报模型、沟蚀研究方法与技术等方面综合评述了近60年国内外沟蚀过程研究进展。提出了今后需要加强研究的重点领域,包括:沟蚀监测方法的标准化和规范化研究;沟蚀过程中沟溯源侵蚀、沟壁崩塌和沟底下切过程的定量表达;浅沟和切沟侵蚀的泥沙搬运能力量化及泥沙输移连续方程;包含浅沟侵蚀的坡面侵蚀预报模型和包含沟蚀的流域侵蚀预报模型;沟蚀防治技术研究。  相似文献   

8.
以陕西省吴起县黄土丘陵沟壑区封禁流域(合沟小流域)为研究对象,通过野外实地测量60条浅沟形态参数,建立浅沟长度与体积回归模型,使用2007年和2013年2期同时相QuickBird影像,提取245条浅沟的长度,计算浅沟侵蚀速率。结果表明:在2007—2013年的6 a内,浅沟的数量基本不变,总长度从2007年的13.74 km增长到2013年的14.12 km,浅沟密度为36.21 km/km~2。浅沟长度变化分为缩减与增长2类,缩减类浅沟占46.94%,沟口多数与切沟沟头相连,由于切沟溯源侵蚀速率高于浅沟的发育速率,导致浅沟长度缩减。依据构建的浅沟长度与体积回归模型,基于影像解译的245条浅沟在6 a间总侵蚀量从1 889.97 m~3增加到1 961.49 m~3,若不考虑体积减小的浅沟,平均每条浅沟每年增长0.20 m~3,草本覆盖的坡面浅沟平均侵蚀速率约为215 t/(km~2·a)。  相似文献   

9.
汶川震区滑坡堆积体坡面侵蚀量测算方法   总被引:1,自引:0,他引:1  
在汶川县选取典型滑坡堆积体,采用三维激光扫描仪实地测量滑坡堆积体形态,用图像分析方法鉴别沟道,用于估算堆积体形成后的土壤侵蚀量。根据滑坡堆积体坡面实测点云数据,采用最小二乘法拟合二次曲线,近似为堆积体坡面沟道各横截面发生侵蚀前的坡面线。结合堆积体发生侵蚀后的坡面沟道实测数据,测算各段沟道侵蚀量后估算出滑坡堆积体坡面侵蚀总量。典型滑坡堆积体坡面侵蚀总量为355 m3。采用传统断面法对计算结果进行验证的结果表明,拟合断面法计算的各分段侵蚀沟体积略大于传统断面法计算结果,相对误差为15.6%。5条分段沟道中最大相对误差为27.1%,最小相对误差为7.9%,拟合断面法计算侵蚀沟体积的精度较好。  相似文献   

10.
黄土高原坡面侵蚀极为严重,导致坡面土地的生产力严重下降.通过对不同坡度坡面苜蓿降雨产流产沙的观测,以坡面玉米和裸地为对照,分析了坡面苜蓿的蓄水保土效益,结果表明:坡面苜蓿耗水较强,土壤含水量低于裸地和玉米地,降雨后苜蓿地产流明显低于裸地,5°、10°和15°坡面其蓄水效益分别可达73.48%,71.43%,69.55%,同时坡面苜蓿根系能有效防止径流冲刷,暴雨形成的冲刷沟深度小于裸地,其保土效益在5°、10°和15°坡面上分别可达91.90%、84.96%和81.02%.坡面种植苜蓿可有效拦截降水,减少坡面冲刷.  相似文献   

11.
基于模拟降雨的北京褐土坡地土壤团粒流失特征试验   总被引:2,自引:0,他引:2  
选取20°北京典型褐土坡面径流小区为试验对象,基于野外人工模拟降雨试验和有无雨滴打击作用对坡面侵蚀的影响,研究了坡面土壤团粒组成及其变化特征,揭示了坡面侵蚀过程中泥沙团粒的分离和输移规律。试验处理包括3种代表性降雨强度(35、65、100 mm/h)和3种植被盖度(0%、30%、80%)。结果表明,消除雨滴打击作用后,坡面侵蚀特征变化明显,坡面含沙量和土壤分离率分别减少25.91%~31.15%和35.10%~41.20%,坡面侵蚀泥沙团粒中值粒径均小于雨滴击溅坡面。通过侵蚀泥沙有效粒径分布和最终粒径分布的比值(E/U)分析泥沙团粒的粒径分选特征,发现产流初始阶段粗砂、细砂、细粉粒和粘粒多以团聚体形式存在,而粗粉砂以初级粒子形式存在;随着降雨历时延长,侵蚀泥沙各粒级的分离程度增加,泥沙颗粒逐步分解为初级粒子。坡面侵蚀泥沙分离规律表明,泥沙团粒结构变化与坡面水动力学特征密切相关,土壤团聚体分形维数(D)与时间(T)呈幂函数关系。坡面产流前雨滴击溅对土壤分离有重要作用,其对土壤分离贡献率为28.09%,而无雨滴打击坡面土壤团聚体分形维数增量是有雨滴打击增量的48.43%。在该区坡地泥沙颗粒输移过程中,稳定性较差的砂粒被分解为细小颗粒,粗粉砂多以初级粒子形式存在,对坡面侵蚀泥沙颗粒分离过程具有重要影响,而粘粒在侵蚀坡面则逐渐富集。  相似文献   

12.
黄土堆积体植物篱减沙效益与泥沙颗粒分形特征研究   总被引:5,自引:0,他引:5  
为探究植物篱措施对工程堆积体边坡的减流减沙效益及其对侵蚀泥沙颗粒分形维数的影响,以堆积体未防护边坡为对照,以不同放水流量对不同坡度堆积体植物篱防护边坡进行了放水冲刷试验。结果表明:与对照相比,植物篱边坡初始产流时间滞后100~500 s,其产流率、产沙率整体均较小,产流率在时间尺度上表现为间歇性波动上升;植物篱减流效率在4%~60%之间,减沙效率范围在15%~50%之间,减流减沙效率均随坡度和放水流量的增加呈幂函数形式减小;各处理侵蚀泥沙颗粒中粉粒均占主导地位,黏粒次之,砂粒含量最少。与对照小区相比,植物篱防护边坡侵蚀泥沙砂粒体积分数降低,黏粒和粉粒体积分数升高;黏粒富集率增加,砂粒富集率减小,泥沙颗粒分形维数增大。分形维数与黏粒和砂粒体积分数之间均呈极显著线性相关,侵蚀泥沙颗粒分形维数主要由黏粒体积分数决定。  相似文献   

13.
秸秆覆盖是防治水土流失最有效的措施之一。该文通过模拟降雨(降雨强度为60 mm/h,降雨历时1 h)研究坡耕地在不同土壤初始含水率状态下秸秆覆盖变化对产沙过程的影响。试验地位于中国科学院红壤生态实验站,土壤类型为耕作铝质湿润淋溶土,试验小区为12 m×3 m,坡度为9%。处理分为5个水平的覆盖度(0、15%、30%、60%和90%)和2种土壤初始含水率(干态和湿态)。结果表明,在0、15%、30%、60%和90%覆盖度下,干态土壤平均产沙速率依次为24.5、15.8、10.4、11.2和1.0 g/(m2·h),同一覆盖度下产沙速率在模拟降雨时段内略微增大。湿态土壤条件下平均产沙速率依次为115.6、70.0、49.6、34.8和31.9 g/(m2·h),同一覆盖度下产沙速率在模拟降雨时段内下降明显。0、15%、30%、60%和90%覆盖度下平衡时产沙速率依次为52.5、30.5、22.8、19.8和15.4 g/(m2·h)。另外,5个水平的覆盖度中,30%的花生秸秆覆盖降低不同前期含水率下土壤产沙速率50%以上。因此,不同前期含水率情况下土壤产沙速率对秸秆覆盖度变化的响应非常明显,30%秸秆覆盖具有较为经济的水土保持效果。  相似文献   

14.
砒砂岩地区沟道沙棘植物"柔性坝"原型拦沙研究   总被引:14,自引:0,他引:14  
本文通过实测资料分析得到砒砂岩区土壤侵蚀的基本特点是以冻融风化非径流土壤侵蚀为主,以沟壑中暴雨径流形成的股流为动力核心搬运输移泥沙,重力和风力仅对非径流产沙起加速作用,人类活动对坡面起破坏作用。小流域上、中、下游冻融风化土壤侵蚀的分配比例是76.1%、17.5%和6.4%,说明支毛沟头是土壤侵蚀的关键部位,沟顶坡、沟谷坡和沟床面积分别为22%、75%和3%,沟谷坡产沙量占总产沙量的90%,说明沟谷坡是产沙的关键部位。针对该地区的产沙规律,试验证明在砒砂岩区支毛沟中以沙棘灌木植物作为拦沙的坝型框架材料是可行的,并给出了明确的物理图形,与沟道淤地坝工程相配套,使粗细沙分选、泄流、生态恢复于一体,发挥综合功能。  相似文献   

15.
雨型对东北典型黑土区顺坡垄作坡面土壤侵蚀的影响   总被引:21,自引:0,他引:21  
基于人工模拟降雨试验,研究了雨型对东北黑土区顺坡垄作坡面土壤侵蚀的影响。根据典型黑土区侵蚀性降雨标准及雨型特征,试验设计了总降雨量相同(降雨量为87.5 mm)的5种不同雨型,即增强型(降雨过程中降雨强度分布为50-75-100-125 mm/h)、减弱型(降雨过程中降雨强度分布为125-100-75-50 mm/h)、峰值型(降雨过程中降雨强度分布为50-75-100-125-100-75-50 mm/h)、谷值型(降雨过程中降雨强度分布为100-75-50-75-100 mm/h)和均匀型(降雨过程中降雨强度保持75 mm/h不变),以及1个坡度(即顺坡垄作改横坡垄作的临界坡度5°)。结果表明,受前期预降雨的影响,各雨型处理的顺坡垄作坡面径流量差异较小,但坡面侵蚀量存在明显差异,其中峰值型雨型引起的坡面侵蚀量最大,分别是谷值型、减弱型、均匀型和增强型雨型处理下的1.20、1.63、1.78、1.80倍。引起侵蚀量较大的雨型(峰值型、谷值型和减弱型)在典型黑土区天然降雨中出现频次超过70%,这可能是该区夏季顺坡垄作坡面侵蚀作用强烈的重要原因之一。同一降雨强度在不同雨型中出现的时序不同,其产生的径流量和侵蚀量对总径流量和总侵蚀量的贡献率也不相同。除125 mm/h外,同一降雨强度出现在起始阶段产生的侵蚀量对坡面总侵蚀量的贡献率显著大于其出现在其他阶段对坡面总侵蚀量的贡献率。  相似文献   

16.
Two alternative in situ area rainwater conservation practices (tied ridging and mulching) were evaluated for four seasons (2004, 2007, 2008 and 2009) at an experimental station in Mekelle, Ethiopia. The objectives were to evaluate the performance of barley as influenced by mulch and tied ridge and to understand the relationships of rainfall and runoff on barley fields. About 16-30% of the seasonal rainfall resulted in runoff when barley was grown without water conservation, whereas the in situ conservation practices resulted in significantly low runoff. Tied ridging and mulching increased the soil water in the root zone by more than 13% when compared with the control. Consequently, grain yield and rainwater use efficiency increased significantly with tied ridging but not with mulching. Tied ridging increased the grain yield over the control at least by 44% during below average rainfall years. Neither mulching nor tied ridging were significantly different from the control when the seasonal rainfall was above average. Since rainfall is often unreliable, we recommend tied ridging as a water conservation technique for loams in the study area in order to mitigate the effect of drought stress in barley. However, tied ridges could be carefully opened when excess water is expected to cause waterlogging.  相似文献   

17.
南方红壤区农田道路强降雨侵蚀过程试验   总被引:2,自引:0,他引:2  
以南方红壤区江西水土保持生态科技园为研究区,通过野外调查选择4种典型农田道路(即裸露土路、碎石道路、泥结石路和植草土路)设置12个原位试验小区,采用人工模拟降雨试验研究了3.0 mm/min强降雨条件下农田道路侵蚀过程及特征。结果表明:被高度压实的农田道路产流时间短(小于2 min),并在2~6 min内径流趋于平稳,径流系数高达65%以上;农田道路产流初期侵蚀率较大,随后下降并在一段时间内趋于稳定。降雨后期,裸露土路路面出现细沟和微型切沟导致侵蚀率有所增大;与裸露土路相比,碎石道路、泥结石路和植草土路均可以改变路面径流的水力学特征,实现土质道路防护和减少侵蚀产沙的作用,减沙效益最低也可达40%左右,并以植草土路的水土保持效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号