首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The empirical calibration of Granier-type heat dissipation sap flow probes that relate temperature difference (DeltaT) to sap velocity (v) was reevaluated in stems of three tropical tree species. The original calibration was confirmed when the entire heated probe was in contact with conducting xylem, but mean v was underestimated when part of the probe was in contact with nonconducting xylem or bark. Analysis of the effects of nonuniform sap velocity profiles on heat dissipation estimates showed that errors increased as v and the proportion of the probe in nonconducting wood increased. If half of a 20-mm probe is in sapwood with a v of 0.15 mm s(-1) and the other half is in nonconducting wood, then mean v for the whole probe can be underestimated by as much as 50%. A correction was developed that can be used if the proportion of the probe in nonconducting wood is known. Even with the entire heated probe in contact with conducting xylem, v would be underestimated when radial velocity gradients are present. In this case, the error would be smaller except when velocity gradients are very steep, as can occur in species with ring-porous wood anatomy. Errors occur because the relationship between DeltaT and v is nonlinear. Mean DeltaT along the probe is therefore not a measure of mean v, and users of heat dissipation probes should not assume that v is integrated along the length of the probe. The same type of error can occur when DeltaT is averaged through time while v is changing, but the error is small unless there are sudden, step changes between zero and high sap velocity. It is recommended that relatively short probes (20 mm or less) be used and that probes longer than the depth of conducting sapwood be avoided. Multiple probes inserted to a range of depths should be used in situations where steep gradients in v are expected. If these conditions are met, heat dissipation probes remain useful and widely applicable for measuring sap flow in woody stems.  相似文献   

2.
In a mature beech stand located in north-eastern Germany, xylem sap flux measurements were continuously performed during the 2002–2004 growing seasons. Ten representative trunks were studied using heated thermal dissipation probes. The measurements aimed at identifying principles governing radial profiles of xylem flux in beech trunks. The measurements were taken up to a trunk depth of 132 mm. The sap flow density in the pericambial xylem was found to vary among trees of different diameters, but was not considerably smaller in suppressed trees. A model for the radial distribution of sap flux density was formulated relating trunk radius and sap flow density. The model takes into account different trunk diameter. About 90% of the sap flux was found to occur in the outer two fifths of the trunk. Using this model, an adequate estimate of transpiration can be achieved at tree and stand level, even when the sap flux measurements are restricted to the outer trunk sectors.  相似文献   

3.
We investigated the radial variation of sap flow within sapwood below the live crown in relation to tree size in 10-, 32-, 54- and 91-year-old maritime pine stands (Pinus pinaster Ait.). Radial variations were determined with two thermal dissipation sensors; one measured sap flux in the outer 20 mm of the xylem (Jref), whereas the other was moved radially across the sapwood in 20-mm increments to measure sap flux at multiple depths (Jref). For all tree sizes, sap flow ratios (Ri = JiJref (-1)) declined with increasing sapwood depth, but the decrease was steeper in trees with large diameters. Correction factors (C) were calculated to extrapolate Jref for an estimate of whole-tree sap flux. A negative linear relationship was established between stem diameter and C, the latter ranging from 0.6 to 1.0. We found that neglecting these radial corrections in 10-, 32-, 54- and 91-year-old trees would lead to overestimation of stand transpiration by 4, 14, 26 and 47%, respectively. Therefore, it is necessary to account for the differential radial profiles of sap flow in relation to tree size when comparing tree transpiration and hydraulic properties among trees differing in size.  相似文献   

4.
Comparisons of tree water relations between treatments, species and sites are facilitated by the use of simple and low-cost measurements of xylem sap flow rates. The transient thermal dissipation (TTD) method is a variant of the constant thermal dissipation (CTD) method of Granier. It has the advantages of limiting thermal interference and of saving electrical energy. Here, our concern was to test a new step towards simplicity and low cost: the applicability of the TTD method with a single probe, i.e., without a reference sensor, following a cycle of 10 min heating and 10 min cooling, and using the same thermal index and multi-species calibration previously assessed with a dual probe. First, the responses of the dual and single probes were compared in an artificial hydraulic column of sawdust in the laboratory over a complete range of flux densities, from 0.3 to 4.0 l dm?2 h?1. Second, diurnal kinetics were compared in a young tree with rapid changes in the sapwood reference temperature of up to 5 °C h?1 for 5 consecutive days. With a relatively stable reference temperature, laboratory results showed that a single probe yielded the same temperature signal and thermal index as a dual probe for the full range of sap flux densities. Within the tree, the cooled temperature of the heated probe, linearly interpolated, proved to be an accurate indicator of the change in the reference temperature over time. Logically, the temperature signals and estimates of sap flux density with the single probe did not differ from the dual-sensor measurements when the cooled temperature was interpolated. Additionally, the responses of the thermal index, yielded in the hydraulic experiment with the sawdust column, fell within the variability of the multi-species calibration. This result supports the previous assessment of a non-species-specific calibration for the TTD method with diffuse porous media. In conclusion, our results showed that the TTD method can be directly applied with a single probe. Limitations and possible future progress are pointed out. This measurement system is probably the simplest technique currently available to measure xylem sap flow.  相似文献   

5.
We determined the axial and radial xylem tension gradients in trunks of young Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Axial specific conductivity (k(s-a)) and sap flux density (Js) were measured at four consecutive depths within the sapwood at a stem height of 1 m. By definition, at a given position in the bole, Js is a function not only of k(s-a) but also of the driving force for water movement. The Js:k(s-a) ratio was therefore used to estimate axial tension gradients and the radial gradients at a stem height of 1 m were calculated from the differences in axial tension gradients at each depth. Tracheid lumen diameter and tracheid length were used to predict differences in k(s-a) and its divergence from the theoretical k(s-a) determined by the Hagen Poisseuille equation. The ratio of k(s-a) (determined in the laboratory) to Js (measured in the field) varied with depth in the sapwood, resulting in non-uniform axial and radial tension gradients from inner to outer sapwood. Transpiration-induced axial tension gradients were in the range of 0.006-0.01 MPa m(-1) excluding the gravitational tension gradient. At a stem height of 1 m, radial tension gradients were in the range of 0.15-0.25 MPa m(-1) and were lower in the middle sapwood than in the inner or outer sapwood. Axial tension gradients were 44-50% higher in the outer sapwood than in the inner sapwood. At a stem height of 1 m, radial Js, calculated on the basis of radial tension gradients and measured radial specific conductivity (k(s-r)), was about two orders of magnitude smaller than axial Js. Our findings indicate that large radial tension gradients occur in the sapwood and clarify the role played by xylem k(s-a) and k(s-r) in determining in situ partitioning of Js in the axial and radial directions.  相似文献   

6.
Radial variation in sap flux density across the sapwood was assessed by the heat field deformation method in several trees of Quercus pubescens Wild., a ring-porous species. Sapwood depths were delimited by identifying the point of zero flow in radial patterns of sap flow, yielding tree sapwood areas that were 1.5-2 times larger than assumed based on visual examinations of wood cores. The patterns of sap flow varied both among trees and diurnally. Rates of sap flow were higher close to the cambium, although there was a significant contribution from the inner sapwood, which was greater (up to 60% of total flow) during the early morning and late in the day. Accordingly, the normalized difference between outer and inner sapwood flow was stable during the middle of the day, but showed a general decline in the afternoon. The distribution of sap flux density across the sapwood allowed us to derive correction coefficients for single-point heat dissipation sap flow measurements. We used daytime-averaged coefficients that depended on the particular shape of the radial profile and ranged between 0.45 and 1.28. Stand transpiration calculated using the new method of estimating sapwood areas and the radial correction coefficients was similar to (Year 2003), or about 25% higher than (Year 2004), previous uncorrected values, and was 20-30% of reference evapotranspiration. We demonstrated how inaccuracies in determining sapwood depths and mean sap flux density across the sapwood of ring-porous species could affect tree and stand transpiration estimates.  相似文献   

7.
We monitored sap flux density (v) diurnally in nine mature southeastern pine (Pinus spp.) trees with a thermal dissipation probe that spanned the sapwood radius. We found the expected pattern of high v near the cambium and decreasing v with depth toward the center of the tree; however, the pattern was not constant within a day or between trees. Radial profiles of trees were steeper earlier in the day and became less steep later in the day. As a result, time-dependent changes in the shape of the radial profile of v were sometimes correlated with daily changes in evaporative demand. As the radial profile became less steep, the inner xylem contributed relatively more to total tree sap flow than it did earlier in the day. We present a 3-parameter Gaussian function that can be used to describe the radial distribution of v in trees. Parameters in the function represent depth in the xylem from the cambium, maximum v, depth in the xylem where maximum v occurs, and the rate of radial change in v with radial depth (beta). Values of beta varied significantly between trees and with time, and were sometimes correlated with air vapor pressure deficit (D). We hypothesize that this occurred during periods of high transpiration when the water potential gradient became great enough to move water in the inner sapwood despite its probable high hydraulic resistance. We examined discrepancies among estimates of daily water use based on single-point, two-point and multi-point (i.e., every 20 mm in the sapwood) measurements. When radial distribution of v was not considered, a single-point measurement resulted in errors as large as 154% in the estimate of daily water use relative to the estimate obtained from a multi-point measurement. Measuring v at two close sample points (10 and 30 mm) did not improve the estimate; however, estimates derived from v measured at two distant sample points (10 and 70 mm) significantly improved the estimate of daily water use, although errors were as great as 32% in individual trees. The variability in v with depth in the xylem, over time, and between trees indicates that measurements of the radial distribution of v are necessary to accurately estimate water flow in trees with large sapwood areas.  相似文献   

8.
Tropical moist forests are notable for their richness in tree species. The presence of such a diverse tree flora presents potential problems for scaling up estimates of water use from individual trees to entire stands and for drawing generalizations about physiological regulation of water use in tropical trees. We measured sapwood area or sap flow, or both, in 27 co-occurring canopy species in a Panamanian forest to determine the extent to which relationships between tree size, sapwood area and sap flow were species-specific, or whether they were constrained by universal functional relationships between tree size, conducting xylem area, and water use. For the 24 species in which active xylem area was estimated over a range of size classes, diameter at breast height (DBH) accounted for 98% of the variation in sapwood area and 67% of the variation in sapwood depth when data for all species were combined. The DBH alone also accounted for > or = 90% of the variation in both maximum and total daily sap flux density in the outermost 2 cm of sapwood for all species taken together. Maximum sap flux density measured near the base of the tree occurred at about 1,400 h in the largest trees and 1,130 h in the smallest trees studied, and DBH accounted for 93% of the variation in the time of day at which maximum sap flow occurred. The shared relationship between tree size and time of maximum sap flow at the base of the tree suggests that a common relationship between diurnal stem water storage capacity and tree size existed. These results are consistent with a recent hypothesis that allometric scaling of plant vascular systems, and therefore water use, is universal.  相似文献   

9.
Fiora A  Cescatti A 《Tree physiology》2006,26(9):1217-1225
Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.  相似文献   

10.
The operability of Granier-type heat dissipation sap flow meters for the medium-term monitoring of Scots pine transpiration was tested. Three sensors that had been working for 3 years were duplicated by inserting new sensors in the same trees. The new sensors operated simultaneously with the old sensors for 18 months. Analysis of the temporal patterns of thermal dissipation of the sensors showed a slight, but significant decrease in all sensors, indicating the conservation of sapwood thermal properties. Although there was a high correlation between sap flux densities registered by the old and new sensors, significant differences in sap flux densities between the duplicated sensors were detected. Such differences could not be attributed to tissue injury around the sensors or to loss of sensitivity of the old sensors, because two of the old sensors registered higher flux rates than the new sensors. No instrumental error to explain the sap flux differences was found. Because the new sensors were installed at some angular distance from the old sap flow meters to avoid thermal interferences, it was inferred that the observed sap flux differences between duplicate sensors were the result of an azimuthal sap flow pattern.  相似文献   

11.
The compensation heat pulse method is widely used to estimate sap flow in conducting organs of woody plants. Being an invasive technique, calibration is crucial to derive correction factors for accurately estimating the sap flow value from the measured heat pulse velocity. We compared the results of excision and perfusion calibration experiments made with mature olive (Olea europaea L. 'Manzanilla de Sevilla'), plum (Prunus domestica L. 'Songal') and orange (Citrus sinensis (L.) Osbeck. 'Cadenero') trees. The calibration experiments were designed according to current knowledge on the application of the technique and the analysis of measured heat pulse velocities. Data on xylem characteristics were obtained from the experimental trees and related to the results of the calibration experiments. The most accurate sap flow values were obtained by assuming a wound width of 2.0 mm for olive and 2.4 mm for plum and orange. Although the three possible methods of integrating the sap velocity profiles produced similar results for all three species, the best results were obtained by calculating sap flow as the weighted sum of the product of sap velocity and the associated sapwood area across the four sensors of the heat-pulse-velocity probes. Anatomical observations showed that the xylem of the studied species can be considered thermally homogeneous. Vessel lumen diameter in orange trees was about twice that in the olive and plum, but vessel density was less than half. Total vessel lumen area per transverse section of xylem tissue was greater in plum than in the other species. These and other anatomical and hydraulic differences may account for the different calibration results obtained for each species.  相似文献   

12.
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.  相似文献   

13.
Our study dealt with the determination of sapwood sap flow of a single Populus euphratica tree by heat pulse technique and the calculation of water consumption of an entire forest stand, given the correlation between sap flow and sapwood area of P. euphratica. The relation between diameter at breast height (DBH) and sapwood area constitutes a powerful model; these variables are highly correlated. By means of an analysis of DBH in the sample plot, the distribution of the sapwood area of the forest land was obtained and the water consumption of this P. euphratica forest, in the lower reaches of the Heihe River, calculated as 214.9 mm by standard specific conductivity of the sample tree.  相似文献   

14.
江西千烟洲湿地松生长旺季树干液流动态及影响因素分析   总被引:4,自引:0,他引:4  
运用Granier热扩散式探针对湿地松树干液流密度进行长期连续测定,并对其周围多个环境因子进行同步测定.样木解析结果表明:处于低龄期的湿地松,整个木质部都可看作边材,边材面积和胸径的关系可用二次函数很好地拟合.液流速率平均值、最大值均与胸径呈幂函数关系,相关关系的判定系数在0.99以上.湿地松生长旺季不同月份晴天液流密度日变化规律基本一致,但液流启动、到达峰值的时间以及开始升高、开始下降的时间间隔存在差异.湿地松各月液流密度日均值总体上呈逐渐减小的趋势,即6月份最高,其次为7月和8月.生长旺季边材液流密度主要受冠层温度、冠层相对湿度和光合有效辐射的影响.采用一元线性回归方程拟合液流密度与单个气象因子的相关关系,并建立液流密度与上述3个因子的多元线性回归方程,所有方程和回归系数的相关性检验均达到极显著水平.各气象因子与液流密度相关程度为冠层相对湿度>光合有效辐射>冠层温度.  相似文献   

15.
Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in estimated mean f(S) declined rapidly with increasing sample size. At n = 10, the coefficient of variation in mean f(S) was 7% and at n = 15 it was slightly less than 5%. These observations indicate that radial variation in sap velocity is an important, albeit often overlooked, source of uncertainty in the scaling process. Failure to recognize that not all sapwood is functional in water transport will introduce systematic bias into estimates of both tree and stand water use. Future studies should devise sampling strategies for assessing radial variation in sap velocity and such strategies should be used to identify the magnitude of this variation in a range of non-, diffuse- and ring-porous trees.  相似文献   

16.
Fiora A  Cescatti A 《Tree physiology》2008,28(9):1317-1323
Understanding the causes determining the radial pattern of sap flux density is important both for improving knowledge of sapwood functioning and for up-scaling sap flow measurements to canopy transpiration and ecosystem water use. To investigate the anatomical connection between whorls and annual sapwood rings, pruning-induced variation in the radial pattern of sap flux density was monitored with Granier probes in a 35-year-old Picea abies (L.) Karst tree that was pruned from the crown bottom up. Modifications in the radial pattern of sap flux density were quantified by a shape index (SI), which varies with the relative contribution of the outer and inner sapwood to tree transpiration. The SI progressively diminished during bottom up pruning, indicating a significant reduction in sap flow contribution of the inner sapwood. Results suggest that the radial pattern of sap flux density depends mainly on the vertical distribution of foliage in the crown, with lower shaded branches hydraulically connected with inner sapwood and upper branches connected with the outer rings.  相似文献   

17.
Sap flux density was measured continuously during the 1999 and 2000 growing seasons by the heat dissipation method in natural Fagus crenata Blume (Japanese beech) forests growing between 550 and 1600 m on the northern slope of the Kagura Peak of the Naeba Mountains, Japan. Sap flux density decreased radially toward the inner xylem and the decrease was best expressed in relation to the number of annual rings from the cambium, or in relation to the relative depth between the cambium and the trunk center, rather than as a function of absolute depth. The relative influences of radiation, vapor pressure deficit and soil water on sap flux density during the growing season were similar for the outer and inner xylem, and at all sites. Measurements of soil water content and water potential at a depth of 0.25 m demonstrated that sap flux density responded similarly and sensitively to water potential changes in this soil layer, despite large differences in rooting depth at different elevations, localizing one important control point in the functioning of this forest ecosystem. Identification of the relative influences of radiation, vapor pressure deficit and drying of the upper soil layer on sap flux density provides a framework for in-depth analysis of the control of transpiration in Japanese beech forests. In addition, the finding that the same general controls are operating on sap flux density despite climate gradients and large differences in overall forest stand structure will enhance understanding of water use by forests along elevation gradients.  相似文献   

18.
Regalado CM  Ritter A 《Tree physiology》2007,27(8):1093-1102
Calibration of the Granier thermal dissipation technique for measuring stem sap flow in trees requires determination of the temperature difference (DeltaT) between a heated and an unheated probe when sap flow is zero (DeltaT(max)). Classically, DeltaT(max) has been estimated from the maximum predawn DeltaT, assuming that sap flow is negligible at nighttime. However, because sap flow may continue during the night, the maximum predawn DeltaT value may underestimate the true DeltaT(max). No alternative method has yet been proposed to estimate DeltaT(max) when sap flow is non-zero at night. A sensitivity analysis is presented showing that errors in DeltaT(max) may amplify through sap flux density computations in Granier's approach, such that small amounts of undetected nighttime sap flow may lead to large diurnal sap flux density errors, hence the need for a correct estimate of DeltaT(max). By rearranging Granier's original formula, an optimization method to compute DeltaT(max) from simultaneous measurements of diurnal DeltaT and micrometeorological variables, without assuming that sap flow is negligible at night, is presented. Some illustrative examples are shown for sap flow measurements carried out on individuals of Erica arborea L., which has needle-like leaves, and Myrica faya Ait., a broadleaf species. We show that, although DeltaT(max) values obtained by the proposed method may be similar in some instances to the DeltaT(max) predicted at night, in general the values differ. The procedure presented has the potential of being applied not only to Granier's method, but to other heat-based sap flow systems that require a zero flow calibration, such as the Cermák et al. (1973) heat balance method and the T-max heat pulse system of Green et al. (2003).  相似文献   

19.
20.
Several heat-based sap flow methods, such as the heat field deformation method and the heat ratio method, include the thermal diffusivity D of the sapwood as a crucial parameter. Despite its importance, little attention has been paid to determine D in a plant physiological context. Therefore, D is mostly set as a constant, calculated during zero flow conditions or from a method of mixtures, taking into account wood density and moisture content. In this latter method, however, the meaning of the moisture content is misinterpreted, making it theoretically incorrect for D calculations in sapwood. A correction to this method, which includes the correct application of the moisture content, is proposed. This correction was tested for European and American beech and Eucalyptus caliginosa Blakely & McKie. Depending on the dry wood density and moisture content, the original approach over- or underestimates D and, hence, sap flux density by 10% and more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号