首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focuses on the aging of whey protein isolate (WPI) films plasticized with glycerol (G) and sorbitol (S). The films were cast from heated aqueous solutions at pH 7 and dried at 23 degrees C and 50% relative humidity (RH) for 16 h. They were stored in a climate room (23 degrees C, 50% RH) for 120 days, and the film properties were measured at regular intervals. The moisture content (MC) of the WPI/G films decreased from 22% (2 days) to 15% (45 days) and was thereafter constant at 15% (up to 120 days). This affected the mechanical properties and caused an increased stress at break (from 2.7 to 8.3 MPa), a decreased strain at break (from 33 to 4%), and an increased glass transition temperature (T(g)) (from -56 to -45 degrees C). The barrier properties were, however, unaffected, with constant water vapor permeability and a uniform film thickness. The MC of the WPI/S films was constant at approximately 9%, which gave no change in film properties.  相似文献   

2.
The stability of ascorbic acid (AA) incorporated in whey protein isolate (WPI) film and the related color changes during storage were studied. No significant loss of AA content was found in any films prepared from pH 2.0 casting solution stored at 30% relative humidity (RH) and 22 °C over 84 days. Total visible color difference (ΔE*(ab)) of all films slowly increased over storage time. The ΔE*(ab) values of pH 3.5 films were significantly higher than those of pH 2.0 films. The stability of AA-WPI films was found to be mainly affected by the pH of the film-forming solution and storage temperature. Oxidative degradation of AA-WPI films followed Arrhenius behavior. Reduction of the casting solution pH to below the pK(a1) (4.04 at 25 °C) of AA effectively maintained AA-WPI storage stability by greatly reducing oxidative degradation, whereas anaerobic and nonenzymatic browning were insignificant. The half-life of pH 2.0 AA-WPI film at 30% RH and 22 °C was 520 days.  相似文献   

3.
The water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI) and WPI-lipid emulsion films dried at different conditions were investigated. As drying temperature increased, WVPs decreased significantly. Significantly lower WVP was observed for emulsion films compared to WPI films. WPI-Beeswax (BW) and WPI-anhydrous milkfat fraction emulsion films dried at 80 degrees C and 40% RH gave the lowest WVP compared to 25 degrees C, 40% RH and 40 degrees C, 40% RH. A large drop in WVP of WPI-BW emulsion films was observed at 20% BW content. The decrease in WVP for emulsion films as drying temperature increased could be due to change in the lipid crystalline morphology and/or lipid distribution within the matrix. Mechanical properties of WPI and WPI-lipid emulsion films, on the other hand, were not modified by drying conditions.  相似文献   

4.
Biodegradable films from isolate of sunflower (Helianthus annuus) proteins   总被引:1,自引:0,他引:1  
The film-forming potential of isolate of sunflower proteins (ISFP) was investigated. Homogeneous films were obtained by dissolution of ISFP in alkaline water (pH 12), addition of a plasticizer, casting, and drying. Maximum protein solubilization and unfolding led to films with the highest elasticity. The effects of five dissolving bases and five plasticizers on the mechanical properties were studied. The use of ionic bases (LiOH, NaOH) capable of interfering with the interproteic noncovalent bonds resulted in the greatest tensile strength (sigma(max)) and elongation at break (epsilon(max)) values (3.9 MPa and 215-251%, respectively). Plasticizers conferred diverse tensile properties to the films: the use of 1,3-propanediol resulted in the highest sigma(max) (27.1 MPa), and glycerol resulted in the greatest epsilon(max) (251%). Different mechanical properties were obtained by using mixtures of these plasticizers.  相似文献   

5.
The influence of sucrose (0-40 wt %) on the thermal denaturation and functionality of whey protein isolate (WPI) solutions has been studied. The effect of sucrose on the heat denaturation of 0.2 wt % WPI solutions (pH 7.0) was measured using differential scanning calorimetry. Sucrose increased the temperature at which protein denaturation occurred, for example, by 6-8 degrees C for 40 wt % sucrose. The dynamic shear rheology of 10 wt % WPI solutions (pH 7.0, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C and then cooled to 30 degrees C. Sucrose increased the gelation temperature and the final rigidity of the cooled gels. The degree of flocculation in 10 wt % oil-in-water emulsions stabilized by 1 wt % WPI (pH 7.0, 100 mM NaCl) was measured using a light scattering technique after they were heated at fixed temperatures from 30 to 90 degrees C for 15 min and then cooled to 30 degrees C. Sucrose increased the temperature at which maximum flocculation was observed and increased the extent of droplet flocculation. These results are interpreted in terms of the influence of sucrose on the thermal unfolding and aggregation of protein molecules.  相似文献   

6.
This work was focused on the relationship between the microstructure and the mechanical and barrier properties of whey protein isolate (WPI) films. Sorbitol (S) and glycerol (G) were used as plasticizers and the pH was varied between 7 and 9. The films were cast from heated aqueous solutions and dried in a climate room at 23 degrees C and 50% relative humidity for 16 h. The microstructure of the films was found to be dependent on the concentration, the plasticizers, and the pH. When the concentration increased, a more aggregated structure was formed, with a denser protein network and larger pores. This resulted in increased water vapor permeability (WVP) and decreased oxygen permeability (OP). When G was used as a plasticizer instead of S, the microstructure was different, and the moisture content and WVP approximately doubled. When the pH increased from 7 to 9, a denser protein structure was formed, the strain at break increased, and the OP decreased.  相似文献   

7.
The structure of aggregates and gels formed by heat-denatured whey protein isolate (WPI) has been studied at pH 7 and different ionic strengths using light scattering and turbidimetry. The results were compared with those obtained for pure beta-lactoglobulin (beta-Lg). WPI aggregates were found to have the same self-similar structure as pure beta-Lg aggregates. WPI formed gels above a critical concentration that varied from close to 100 g/L in the absence of added salt to about 10 g/L at 0.2 M NaCl. At low ionic strength (<0.05 M NaCl) homogeneous transparent gels were formed, while at higher ionic strength the gels became turbid but had the same self-similar structure as reported earlier for pure beta-Lg. The length scale characterizing the heterogeneity of the gels increased exponentially with increasing NaCl concentration for both WPI and pure beta-Lg, but the increase was steeper for the former.  相似文献   

8.
The mechanical and physical properties of glycerol-plasticized wheat gluten films dried at different temperatures (20, 50, and 80 degrees C) and relative humidities (35 and 70% RH) were investigated. Dispersion of wheat gluten was prepared at pH 11 in aqueous solution. Films were obtained by casting the wheat gluten suspension, followed by solvent evaporation in a temperature and relative humidity controlled chamber. Decreasing relative humidity altered most of the mechanical properties. At 35% RH, tensile strength increased when drying temperature increased. However, at 70% RH, tensile strength decreased when temperature increased. Thickness of the films decreased by increasing temperature. Hypothetical coating strength increased with increasing drying temperature at 35% RH. However, at 70% RH, a maximum value was observed at 50 degrees C. Films produced at 80 degrees C exhibited low solubility in aqueous solution. Addition of 1.5% (w/v) sodium dodecyl sulfate increased solubility of all of the films except the film dried at 50 degrees C and 70% RH. Overall, drying temperature and relative humidity affected mechanical and physical properties of the wheat gluten films. However, the effect of drying temperature was more pronounced than the effect of relative humidity.  相似文献   

9.
Calcium caseinate (CC) and whey protein isolate (WPI) films were prepared to contain 5 or 10% Gluconal Cal (GC), a mixture of calcium lactate and gluconate, or 0.1 or 0.2% alpha-tocopheryl acetate (VE), respectively. The pH and viscosity of film-forming solutions and the water vapor permeability and tensile property of the films were determined using standard procedures. CC and WPI films have the capabilities to carry high concentration of GC or VE, but some of the film functionality might be compromised. Adding VE to CC and WPI films increased film elongation at break, whereas incorporating 0.2% VE decreased WVP of CC films and tensile strength of both CC and WPI films. Incorporation of GC reduced the tensile strength of CC films (P < 0.05), with 10% GC decreasing both elongation at break and WVP (P < 0.05). These types of films may be used for wrapping or coating to enhance the nutritional value of foods. The concentration of GC and VE added to the films must be carefully selected to meet required water barrier and mechanical properties of the films depending on their specific applications.  相似文献   

10.
The effect of heat-denatured whey protein isolate (dWPI)/whey protein isolate (WPI) ratio (0-0.6), microfluidization pressure (0-1000 bar), and number of passes (1-10) on the uniaxial shear stress at 10% (sigma(10)) and 80% (sigma(80)) relative deformation of dWPI/WPI heat-induced gels (14% total protein, w/w) was studied. No correlation between the average diameter of aggregates and the dWPI/WPI ratio, microfluidization pressure, or number of passes was found. However, increasing the microfluidization pressure or the number of passes resulted in a narrower size distribution of aggregates. Increasing the dWPI/WPI ratio and the number of passes resulted in a decrease and an increase of gel hardness, respectively. The results were interpreted in terms of more random aggregation/gelation of proteins in the presence of aggregates that could result in localized heterogeneities into gels and more dissipation of the deformation energy during compression. The positive effect of the number of passes on the gel hardness was also considered to be due to a more homogeneous aggregation/gelation of proteins in the presence of smaller aggregates.  相似文献   

11.
The properties of whey protein isolate (WPI) stabilized oil-in-water (O/W) nanoemulsions (d(43) ≈ 66 nm; 0.5% oil, 0.9% WPI) and emulsions (d(43) ≈ 325 nm; 0.5% oil, 0.045% WPI) were compared. Emulsions were prepared by high-pressure homogenization, while nanoemulsions were prepared by high-pressure homogenization and solvent (ethyl acetate) evaporation. The effects of pH, ionic strength (0-500 mM NaCl), thermal treatment (30-90 °C), and freezing/thawing on the stability and properties of the nanoemulsions and emulsions were compared. In general, nanoemulsions had better stability to droplet aggregation and creaming than emulsions. The nanoemulsions were unstable to droplet flocculation near the isoelectric point of WPI but remained stable at higher or lower pH values. In addition, the nanoemulsions were stable to salt addition, thermal treatment, and freezing/thawing (pH 7). Lipid oxidation was faster in nanoemulsions than emulsions, which was attributed to the increased surface area. Lipase digestibility of lipids was slower in nanoemulsions than emulsions, which was attributed to changes in interfacial structure and protein content. These results have important consequences for the design and utilization of food-grade nanoemulsions.  相似文献   

12.
Protein fractions were isolated from coconut: coconut skim milk protein isolate (CSPI) and coconut skim milk protein concentrate (CSPC). The ability of these proteins to form and stabilize oil-in-water emulsions was compared with that of whey protein isolate (WPI). The solubility of the proteins in CSPI, CSPC, and WPI was determined in aqueous solutions containing 0, 100, and 200 mM NaCl from pH 3 to 8. In the absence of salt, the minimum protein solubility occurred between pH 4 and 5 for CSPI and CSPC and around pH 5 for WPI. In the presence of salt (100 and 200 mM NaCl), all proteins had a higher solubility than in distilled water. Corn oil-in-water emulsions (10 wt %) with relatively small droplet diameters (d32 approximately 0.46, 1.0, and 0.5 mum for CSPI, CSPC, and WPI, respectively) could be produced using 0.2 wt % protein fraction. Emulsions were prepared with different pH values (3-8), salt concentrations (0-500 mM NaCl), and thermal treatments (30-90 degrees C for 30 min), and the mean particle diameter, particle size distribution, zeta-potential, and creaming stability were measured. Considerable droplet flocculation occurred in the emulsions near the isoelectric point of the proteins: CSPI, pH approximately 4.0; CSPC, pH approximately 4.5; WPI, pH approximately 4.8. Emulsions with monomodal particle size distributions, small mean droplet diameters, and good creaming stability could be produced at pH 7 for CSPI and WPI, whereas CSPC produced bimodal distributions. The CSPI and WPI emulsions remained relatively stable to droplet aggregation and creaming at NaCl concentrations of < or =50 and < or =100 mM, respectively. In the absence salt, the CSPI and WPI emulsions were also stable to thermal treatments at < or =80 and < or =90 degrees C for 30 min, respectively. These results suggest that CSPI may be suitable for use as an emulsifier in the food industry.  相似文献   

13.
Raman spectroscopy was used to elucidate structural changes of beta-lactoglobulin (BLG), whey protein isolate (WPI), and bovine serum albumin (BSA), at 15% concentration, as a function of pH (5.0, 7.0, and 9.0), heating (80 degrees C, 30 min), and presence of 0.24% kappa-carrageenan. Three data-processing techniques were used to assist in identifying significant changes in Raman spectral data. Analysis of variance showed that of 12 characteristics examined in the Raman spectra, only a few were significantly affected by pH, heating, kappa-carrageenan, and their interactions. These included amide I (1658 cm(-1)) for WPI and BLG, alpha-helix for BLG and BSA, beta-sheet for BSA, CH stretching (2880 cm(-1)) for BLG and BSA, and CH stretching (2930 cm(-1)) for BSA. Principal component analysis reduced dimensionality of the characteristics. Heating and its interaction with kappa-carrageenan were identified as the most influential in overall structure of the whey proteins, using principal component similarity analysis.  相似文献   

14.
A formulation for the whey protein isolate film or coating incorporating ascorbic acid (AA-WPI film or coating) was developed. Tensile and oxygen-barrier properties of the AA-WPI film were measured. Antioxidant effects of the AA-WPI coating on roasted peanuts were studied by comparing the values of peroxide (PO), thiobarbituric acid reactive substance (TBARS), and free-radical-scavenging activity, determined with noncoated peanuts and peanuts coated with WPI with and without ascorbic acid during storage at 21% relative humidity (RH) and 23, 35, and 50 degrees C. The incorporation of AA reduced elongation of WPI films. The oxygen-barrier property of the WPI film was significantly improved by incorporation of AA. The AA-WPI coating retarded lipid oxidation in peanuts significantly at 23, 35, and 50 degrees C. The AA-WPI coated peanuts were more red than noncoated peanuts at all storage temperatures.  相似文献   

15.
Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.  相似文献   

16.
Yam starch films, formulated with yam starch (4.00 g/100 g of solution) and glycerol (1.30 and 2.00 g/100 g of solution) in filmogenic solution, were employed as packaging to extend storage life of strawberries stored at 4 degrees C and 85% RH. The effects of yam starch films on fruits were compared to the effect of PVC (poly(vinyl chloride)) packaging. Starch and PVC films significantly reduced decay of the fruits compared to control. Compared to starch films, PVC presented the better behavior on weight and firmness retention of fruits, especially in the last 7 days of storage. Considering microbiological counts, the shelf life of control fruits was 14 days, and of all packaged samples, stored at same conditions, was 21 days. Two different formulations of yam starch film were tested and had different mechanical properties as a function of glycerol content (1.30 and 2.00 g/100 g of solution) but showed no difference when employed as strawberries packaging.  相似文献   

17.
Cast zein films are brittle at room conditions, so plasticizers are added to make them more flexible. The tensile properties of these films are known to be affected by the relative humidity (RH) of the ambient air. However, little is known about how the plasticizers are affected by RH. Cast zein films were plasticized with either glycerol (GLY), triethylene glycol (TEG), dibutyl tartrate (DBT), levulinic acid (LA), polyethylene glycol 300 (PEG), or oleic acid (OA). Mechanical properties and moisture content (MC) of the films were measured after one week of storage at 3, 20, 50, 70, 81, and 93% RH. The relative humidity of the films' storage had a great effect on the films' tensile properties. All the films' tensile strength and Young's modulus values decreased as RH increased. Films containing DBT, TEG, LA, or PEG showed an increase in the percent elongation with increasing RH. Films containing GLY, OA, or no plasticizer did not show any increase in percent elongation as RH increased. The changes seen in tensile properties with increasing RH are because of zein's hygroscopic nature. The absorbed water will further plasticize the zein. The type of plasticizer used determined the extent of the changes seen in the tensile properties of films stored at different RH values. Depending on the plasticizers used in the film, there were large differences in the amount of water absorbed. Films increasingly absorbed water depending on the plasticizer they contained in the order GLY > TEG > LA > PEG > NONE > DBT > OA. Films containing hygroscopic plasticizers like TEG absorbed too much water at high RH and became weak, but they absorbed enough water at lower RH values to not be brittle. While films containing the more hydrophobic plasticizer DBT were brittle at intermediate RH values, they had good mechanical properties at high RH values.  相似文献   

18.
Flaxseed oil was emulsified in whey protein isolate (WPI) and spray-dried. Powder characteristics and oxidative stability of oil at relative humidities (RH) from RH approximately 0% to RH 91% at 37 degrees C were analyzed. Oil droplets retained their forms in drying and reconstitution, but the original droplet size of the emulsion was not restored when the powder was dispersed in water. The particles seemed to be covered by a protein-rich surface layer as analyzed by electron spectroscopy for chemical analysis (ESCA). Oxidation of flaxseed oil dispersed in the WPI matrix was retarded from that of bulk oil but followed the same pattern as bulk oil with respect to humidity. A high rate of oxidation was found for both low and high humidity conditions. The lowest rate of oxidation as followed by peroxide values was found at RH 75%, a condition that is likely to diverge significantly from the monolayer moisture value. A weak baseline transition observed for the WPI matrix in a differential scanning calorimetry (DSC) thermogram suggested a glassy state of the matrix at all storage conditions. This was not consistent with the observed caking of the powder at RH 91%. Scanning electron microscopy (SEM) images revealed a considerable structural change in the WPI matrix in these conditions, which was suggested to be linked with a higher rate of oxygen transport. Possible mechanisms for oxygen transport in the whey protein matrix under variable RHs are discussed.  相似文献   

19.
The effects of whey protein hydrolysis on film oxygen permeability (OP) and mechanical properties at several glycerol-plasticizer levels were studied. Both 5.5% and 10% degree of hydrolysis (DH) whey protein isolate (WPI) had significant effect (p 0.05) occurred for film OP between unhydrolyzed WPI, 5.5% DH WPI, and 10% DH WPI films at the same glycerol content. Hydrolyzed WPI films of mechanical properties similar to those of WPI films had better oxygen barrier. Therefore, use of hydrolyzed WPI allowed achievement of desired film flexibility with less glycerol and with smaller increase in OP.  相似文献   

20.
Whey powders have attracted attention for use in the food industry. The Maillard reaction is a major deteriorative factor in the storage of these and other dairy food products. The objective of the present work was to further study the Maillard reaction as related to the physical structure of the matrix, either porous or mechanically compressed, or to storage above the T(g) of anhydrous whey systems. Sweet whey (W), reduced minerals whey (WRM), whey protein isolate (WPI), and whey protein concentrate (WPC) were stored in ovens at selected temperatures. Colorimetric measurements were performed with a spectrocolorimeter, thermal analyses (TGA) by means of a thermobalance, and glass transition temperature studies by DSC. The browning order in the vials and in the compressed systems followed the order W > WRM> WPC > WPI. k(w2), the slope of the second linear segment of the TGA curve, was related to the loss of water due to nonenzymatic browning (NEB). Browning development was in good relationship with this loss of weight. In the glassy state, the compressed systems developed higher rates of browning and weight loss (assigned to NEB reactions) than the porous systems. Reaction rates in both (porous and compressed) systems became similar as (T - T(g)) increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号