首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of consumption of dissolved oxygen by apple polyphenol oxidase in cider apple juices did not correlate with polyphenol oxidase activity in the fruits and decreased faster than could be explained by the decrease of its polyphenolic substrates. The kinetics parameters of a crude polyphenol oxidase extract, prepared from apple (Braeburn cultivar), were determined using caffeoylquinic acid as a substrate. Three apple procyanidin fractions of n 80, 10.5, and 4 were purified from the parenchyma of cider apples of various cultivars. Procyanidins, caffeoylquinic acid, (-)-epicatechin, and a mixture of caffeoylquinic acid and (-)-epicatechin were oxidized by reaction with caffeoylquinic acid o-quinone in order to form oxidation products. All the fractions were evaluated for their inhibitory effect on PPO activity. Native procyanidins inhibited polyphenol oxidase activity, the inhibition intensity increasing with n. The polyphenol oxidase activity decreased by 50% for 0.026 g/L of the fraction of n 80, 0.17 g/L of the fraction of n 10.5, and 1 g/L of the fraction of n 4. The inhibitory effect of oxidized procyanidins was twice that of native procyanidins. Oxidation products of caffeoylquinic acid and (-)-epicatechin also inhibited polyphenol oxidase.  相似文献   

2.
Partial purification of latent persimmon fruit polyphenol oxidase   总被引:1,自引:0,他引:1  
Persimmon fruit polyphenol oxidase (PPO) was partially purified using a combination of phase partitioning with Triton X-114 and ammonium sulfate fractionation between 50 and 75%. The enzyme, which showed both monophenolase and diphenolase activities, was partially purified in a latent form and could be optimally activated by the presence of 1 mM sodium dodecyl sulfate (SDS) with an optimum pH of 5.5. In the absence of SDS, the enzyme showed maximum activity at acid pH. SDS-PAGE showed the presence of a single band when L-DOPA was used as substrate. The apparent kinetic parameters of the latent enzyme were determined at pH 5.5, the V(m) value being 15 times higher in the presence of SDS than in its absence, whereas the K(M) was the same in both cases, with a value of 0.68 mM. The effect of several inhibitors was studied, tropolone being the most active with a K(i) value of 0.45 microM. In addition, the effect of cyclodextrins (CDs) was studied, and the complexation constant (K(c)) between 4-tert-butylcatechol (TBC) and CDs was calculated using an enzymatic method. The value obtained for K(c) was 15580 M(-1).  相似文献   

3.
多酚氧化酶高强度脉冲磁场灭活及动力学模型   总被引:2,自引:0,他引:2  
为了找到一种有效控制果蔬中多酚氧化酶(PPO)活性的方法,该文研究了高强度脉冲磁场(PMF)对PPO活性的影响,并进行了灭酶动力学模型的研究。结果表明,当PPO于磁场强度2.5、3.5和4.5特斯拉(T)分别处理5至40个脉冲时,酶的残余活性随着磁场强度和脉冲数的增加而逐渐降低。在4.5 T处理40个脉冲时,酶的灭活率最高达到93.10%。对灭活动力学曲线分别用Bigelow模型、Weibull模型和Hülsheger模型进行拟合,发现Weibull模型对PMF下PPO的灭活的拟合度最好。可见,高强度脉冲磁场可以作为一种有效杀灭果蔬中多酚氧化酶的非热技术,且酶的灭活过程符合Weibull模型,该模型可以为实际应用提供参考。  相似文献   

4.
Salsolinol, a tethrahydroisoquinoline present in banana and biosynthesized from dopamine, was oxidized by banana pulp polyphenol oxidase to its corresponding salsolinol-o-quinone. This oxidation was pH-dependent and showed a maximum at acidic pH values. At physiological pH of 5.0, the values obtained for the kinetic parameter (V(m) and K(m)) were 62.5 microM/min and 1.7 mM, respectively. When dopamine was added to the reaction medium to imitate physiological conditions, salsolinol was co-oxidized by dopamine-quinone. When this phenomenon was studied oxygraphically, an unexpected activation of dopamine oxidation was found in the presence of salsolinol. This activation was related with the enzyme's kinetic mechanism and was named "kinetic synergism", because a bad substrate activated a good one. A possible physiological role is discussed.  相似文献   

5.
In this study, polyphenol oxidase (PPO) was extracted from commercial potatoes. Degradation of pentachlorophenol by potato PPO was investigated. The experimental results show that potato PPO is more active in weak acid than in basic condition and that the optimum pH for the reaction is 5.0. The degradation of pentachlorophenol by potato PPO reaches a maximum at 298 K. After reaction for 1 h, the removal of both pentachlorophenol and total organic carbon is >70% with 6.0 units/mL potato PPO at pH 5.0 and 298 K. Pentachlorophenol can be degraded through dechlorination and ring-opening by potato PPO. The work demonstrates that pentachlorophenol can be effectively eliminated by crude potato PPO.  相似文献   

6.
多酚氧化酶(Polyphenol oxidase,PPO,EC 1.14.18.1 or 1.10.3.2)与果蔬加工制品的色泽、抗氧化能力关系密切。果蔬PPO酶学特性分析和活性控制越来越受到关注,为设计、开发番茄加工技术和工艺提供理论依据,该文采用光谱法,研究了红熟番茄(Lycopersicum esculentum Mill. cv 918)果实PPO的酶学特性。研究结果表明红熟番茄果实PPO的最适反应pH值是6.0,反应温度是40℃,耐热性较好,50℃加热10 min仍保有88%的活性。红熟番茄果实PPO对一元酚、二元酚和三元酚均有催化氧化能力,最适底物是儿茶酚,其最大反应速率和米氏常数分别是226.30 U/min和 6.00 mmol/L。抗坏血酸、β-巯基乙醇或L-半胱氨酸可抑番茄PPO活性,十二烷基硫酸钠可显著增强其活性。  相似文献   

7.
For the first time, a cytosolic carotenoid cleavage enzyme isolated from quince (Cydonia oblonga) fruit is described. The enzyme was partially purified by using centrifugation, acetone precipitation, ultrafiltration (300 kD, 50 kD), isoelectric focusing (pH 3-10), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (7.5%). In this way, an enzymatically active protein fraction was obtained that contained three similar proteins, all exhibiting molecular weights in the range of 20 kD. Using beta-carotene as substrate, the enzyme activity was detected spectrophotometrically at a wavelength of 505 nm. The time constant of the reaction was 8.2 min, the Michaelis constant (K(m)) was 11.0 micromol x L(-1), and the maximum velocity (v(max)) was 0.083 micromol x L(-1) x min(-1) x mg(protein)(-1). The optimum temperature was above 50 degrees C.  相似文献   

8.
To understand conversion of bisphenol A and its related compounds under some chemical and biological environments, oxidation of these compounds was performed. Bisphenol A was oxidized to monoquinone and bisquinone derivatives by Fremy's salt, a radical oxidant; but salcomine and alkali did not catalyze the oxidation by molecular oxygen. Bisphenol A, bisphenol B, and 3,4'-(1-methylethylidene)bisphenol were converted to their monoquinone derivatives in the presence of oxygen and polyphenol oxidase from mushroom at 25 degrees C at pH 6.5. Among crude enzyme solutions of fruits and vegetables, potato, mushroom, eggplant, edible burdock, and yacon showed remarkable oxidative activity on bisphenol A. The highest activity was observed in potato, and the main product obtained by the enzymatic oxygenation was the monoquinone derivative of bisphenol A, accompanied by a small amount of the bisquinone derivative. The oxidation reactions found here will be useful for developing techniques for elimination of phenolic endocrine disrupters from the environment.  相似文献   

9.
Oxidation of the flavonol quercetin by polyphenol oxidase   总被引:5,自引:0,他引:5  
Because direct oxidation of flavonols by polyphenol oxidase (PPO) has not previously been reported and, given the importance of flavonols, the ability of broad bean seed PPO to oxidize the flavonol quercetin was studied. The reaction was followed by recording spectral changes with time. Maximal spectral changes were observed at 291 nm (increase) and at 372 nm (decrease). The presence of two isosbectic points (at 272 and 342 nm) suggested the formation of only one absorbent product. These spectral changes were not observed in the absence of PPO. The oxidation rate, which varied with pH, was highest at pH 5.0. The following kinetic parameters were also determined: V(m) = 11 microM/min, K(m) = 646 microM, V(m)/K(m) = 17 x 10(-)(2) min(-)(1). Flavonol oxidation was efficiently inhibited (K(I) = 3.5 microM) by specific PPO inhibitors such as 4-hexylresorcinol. The results obtained showed that quercetin oxidation was strictly dependent on the presence of PPO.  相似文献   

10.
Polyphenol oxidase and peroxidase were extracted from two different varieties of strawberry fruit (Fragaria x ananassa D, cv. 'Elsanta' and Fragaria vesca L, cv. 'Madame Moutot') and characterized using reliable spectrophotometric methods. In all cases, the enzymes followed Michaelis-Menten kinetics, showing different values of peroxidase kinetics parameters between the two cultivars: Km = 50.68 +/- 2.42 mM ('Elsanta') and 18.18 +/- 8.79 mM ('Madame Moutot') mM and Vmax = 0.14 +/- 0.03 U/g ('Elsanta') and 0.05 +/- 0.01 U/g ('Madame Moutot'). The physiological pH of fruit at the red ripe stage negatively affected the expression of both oxidases, except polyphenol oxidase from 'Madame Moutot' that showed the highest residual activity (68% of the maximum). Peroxidase from both cultivars was much more thermolable as compared with PPO, losing over 60% of relative activity already after 60 min of incubation at 40 degrees C. The POD activation energy was much lower than the PPO activation energy (DeltaE = 97.5 and 57.8 kJ mol-1 for 'Elsanta' and 'Madame Moutot', respectively). Results obtained from d-glucose and d-fructose inhibition tests evidenced a decreasing course of PPO and POD activities from both cultivars as the sugar concentration in the assay medium increased. Changes in CIE L*, a*, b*, chroma, and hue angle values were taken as a browning index of the samples during storage at 4 degrees C. A decrease in L* was evident in both cultivars but more marked in 'Elsanta'. PPO and POD activities from cv. 'Elsanta' were very well-correlated with the parameter L* (r2=0.86 and 0.89, respectively) and hue angle (r2=0.85 and 0.93, respectively). According to these results, the browning of the fruit seemed to be in relation to both oxidase activities.  相似文献   

11.
Chlorogenic acid is the major diphenol of many fruits, where it is oxidized enzymatically by polyphenol oxidase (PPO) or peroxidase (POD) to its o-quinone. In spectrophotometric studies of chlorogenic acid oxidation with a periodate ratio of [CGA]0/[IO4-]0 < 1 and [CGA]0/[IO4-]0 > 1, the o-quinone was characterized as follows: lambda(max) at 400 nm and epsilon = 2000 and 2200 M-1 cm-1 at pH 4.5 and 7.0, respectively. In studies of o-quinone generated by the oxidation of chlorogenic acid using a periodate at ratio of [CGA]0/[IO4-]0 > 1, a reaction with the remaining substrate was detected, showing rate constants of k = 2.73 +/- 0.17 M-1 s-1 and k' = 0.05 +/- 0.01 M-1 s-1 at the above pH values. A chronometric spectrophotometric method is proposed to kinetically characterize the action of the PPO or POD on the basis of measuring the time it takes for a given amount of ascorbic acid to be consumed in the reaction with the o-quinone. The kinetic constants of mushroom PPO and horseradish POD are determined.  相似文献   

12.
13.
A kinetic study of the activity of soluble and membrane-bound latent polyphenol oxidase (PPO) extracted from beet root (Beta vulgaris) was carried out. For the first time, two types of behavior (hyperbolic and sigmoid) are reported in the same enzyme for PPO activation by the surfactant sodium dodecyl sulfate (SDS), depending on substrate nature. A kinetic model based on cooperative systems is developed to describe the activation effect of SDS, enabling the determination of the number of surfactant molecules binding to the enzyme in the activation process. The results indicate that the active site of the enzyme is not affected by SDS and that a stepwise conformational change favors the access of hydrophobic substrates compared to hydrophilic ones. Differential activation of PPO mediated by SDS may be of relevance in the control of PPO activity since the enzyme is able to express activity toward a specific substrate while remaining latent to others.  相似文献   

14.
The purification and partial enzymology characteristics of polyphenol oxidase (PPO) from rape flower were studied. After preliminary treatments, the crude enzyme solution was in turn purified with ammonium sulfate, dialysis, and Sephadex G-75 gel chromatography. The optimal conditions and stability of PPO were examined at different pH values and temperatures. Subsequently, PPO was also characterized by substrate (catechol) concentrations, inhibitors, kinetic parameters, and molecular weight. Results showed that the optimal pH for PPO activity was 5.5 in the presence of catechol and that PPO was relatively stable at pH 3.5-5.5. PPO was moderately stable at temperatures from 60 to 70 °C, whereas it was easily denatured at 80-90 °C. Ethylenediaminetetraacetic acid, sodium chloride, and calcium chloride had little inhibitive effects on PPO, whereas citric acid, sodium sulfite, and ascorbic acid had strongly inhibitive effects. The Michaelis-Menten constant (K(m)) and maximal reaction velocity (V(max)) of PPO were 0.767 mol/L and 0.519 Ab/min/mL of the crude PPO solution, respectively. PPO was finally purified to homogeneity with a purification factor of 4.41-fold and a recovery of 12.41%. Its molecular weight was 60.4 kDa, indicating that the PPO is a dimer. The data obtained in this research may help to prevent the enzymatic browning of rape flower during its storage and processing.  相似文献   

15.
Polyphenol oxidase (EC 1.14.18.1), a thylakoid membrane-bound enzyme, was isolated by sonication of osmotically shocked chloroplasts from iceberg lettuce (Lactuca sativa). The enzyme showed monophenolase activity when assayed on (p-hydroxyphenyl)propionic acid with 3-methyl-2-benzothiazolinone hydrazone in a reliable continuous spectrophotometric method, with high sensitivity, accuracy, and precision. The monophenolase activity showed a lag period before the steady-state rate (V(ss)) was reached. Both kinetic parameters, the lag period and the steady-state rate, depended on the pH, the enzyme and substrate concentrations, and the presence of catalytic amounts of o-diphenol. This activity shows inhibition by high substrate concentration. The experimental results correspond with the mechanism previously described for PPO from other sources. Kinetic constants K(m), V(max), and K(i) were determined.  相似文献   

16.
In the present paper the catecholase and cresolase activities of eggplant polyphenol oxidase (PPO) are described. To preserve the latter activity, a partially purified enzyme was used. Peroxidase was removed from the preparation to avoid its interference with PPO during phenol oxidation. The partially purified eggplant PPO was fully active. The catecholase/cresolase ratio of 41.1 indicated that, in a pH close to the physiological, diphenol oxidation predominates over monophenol oxidation. The characteristic lag phase of the cresolase activity is modulated by the pH, the monophenol and diphenol concentrations, and the enzyme's concentration. The effect of several inhibitors was also tested, and the K(i) values of the two most effective (tropolone and 4-hexylresorcinol) were determined.  相似文献   

17.
A partial characterization of polyphenol oxidase (PPO) activity in Ocimum basilicum L. is described. PPO in O. basilicum L. was extracted and purified through (NH4)2SO4 precipitation, dialysis, and a Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity column. The samples obtained from (NH4)2SO4 precipitation and dialysis were used for the characterization of PPO. At the end of purification by affinity chromatography, 11.5-fold purification was achived. The purified enzyme exhibited a clear single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the enzyme was estimated to be approximately 54 kDa. The contents of total phenolic and protein of O. basilicum L. extracts were determined. The total phenolic content of O. basilicum L. was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 280 mg 100 g(-1) on a fresh weight basis. The protein content was determined according to the Bradford method. The enzyme showed activity to 4-methylcatechol, catechol, and pyrogallol substrates, but not to tyrosine. Therefore, of these three substrates, 4-methylcatecol was the best substrate due to the highest V(max)/K(m) value, followed by pyrogallol and catechol. The optimum pH was at 6, 8, and 9 for 4-methylcatechol, catechol, and pyrogallol, respectively. The enzyme had an optimum temperature of 20, 40, and 50 degrees C for 4-methylcatechol, catechol, and pyrogallol, respectively. It was found that optimum temperature and pH were dependent on the substrates studied. The enzyme activity with increasing temperature and inactivation time for 4-methylcatechol, catechol, and pyrogallol substrates decreased due to heat denaturation of the enzyme.  相似文献   

18.
A partial characterization of polyphenol oxidase (PPO) activity in raspberry fruits is described. Two early cultivars harvested in May/June (Heritage and Autumm Bliss) and two late cultivars harvested in October-November (Ceva and Rubi) were analyzed for PPO activity. Stable and highly active PPO extracts were obtained using insoluble poly(vinylpyrrolidone) (PVP) and Triton X-100 in sodium phosphate, pH 7.0 buffer. Polyacrylamide gel electrophoresis of raspberry extracts under nondenaturing conditions resolved in one band (R(f)()(1) = 0.25). Raspberry PPO activity has pH optima of 8.0 and 5.5, both with catechol (0.1 M). Maximum activity was with D-catechin (catecholase activity), followed by p-coumaric acid (cresolase activity). Heritage raspberry also showed PPO activity toward 4-methylcatechol. Ceva and Autumm Bliss raspberries showed the higher PPO activity using catechol as substrate.  相似文献   

19.
The reduction capacity for ferric chelates of Geum urbanum L. showed a marked increase when plants were grown under conditions of iron‐shortage. Ferric ethylenediaminetetraacetate (FeEDTA) was reduced with a pH optimum between 5 and 6. The reaction exhibited a low substrate affinity with a Km much higher than the expected concentration range of soluble iron in the soil. Analysis of the saturation plots conform to Michaelis‐Menten kinetics. Both Vmax and Km values varied to a broad extent with changing assay and plant culturing conditions. Ferricyanide was reduced at significantly higher rates than FeEDTA and inhibited the reduction of FeEDTA compete‐tively. The kinetic characteristics of iron reduction by plants will be discussed in terms of ecological significance as part of an adaptation to the soil conditions.  相似文献   

20.
Qualitative and quantitative analyses of phenolic compounds were carried out on quince fruit samples from seven different geographical origins in Portugal. For each origin, both pulp and peel were analyzed by reversed-phase HPLC-DAD and HPLC-DAD/MS.The results revealed differences between the phenolic profiles of pulps and peels in all studied cases. The pulps contained mainly caffeoylquinic acids (3-, 4-, and 5-O-caffeoylquinic acids and 3,5-dicaffeoylquinic acid) and one quercetin glycoside, rutin (in low amount). The peels presented the same caffeoylquinic acids and several flavonol glycosides: quercetin 3-galactoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, and several unidentified compounds (probably kaempferol glycoside and quercetin and kaempferol glycosides acylated with p-coumaric acid). The highest content of phenolics was found in peels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号