首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In our studies aimed at assessing the minimum duration of vaccinal immunity (DOI), approximately 1000 dogs have been vaccinated with products from all the major US veterinary biological companies. The DOI for the various products is determined by antibody titers for all dogs and, by challenge studies in selected groups of dogs. Recently, all major companies that make canine vaccines for the U.S. market have completed their own studies; published data show a 3 years or longer minimum DOI for the canine core products, canine distemper virus (CDV), canine parvovirus type 2 (CPV-2), and canine adenovirus-2 (CAV-2). Studies with feline core vaccines - feline parvovirus (FPV), calicivirus (FCV) and herpes virus type I (FHV-1) have shown a minimum DOI of greater than 3 years. Based on these results, the current canine and feline guidelines (which recommend that the last dose of core vaccines be given to puppies and kittens > or =12 weeks of age or older, then revaccination again at 1 year, then not more often than every 3 years) should provide a level of protection equal to that achieved by annual revaccination. In contrast, the non-core canine and feline vaccines, perhaps with the exception of feline leukaemia vaccines, provide immunity for < or =1 year. In general the effectiveness of the non-core products is less than the core products. Thus, when required, non-core vaccines should be administered yearly, or even more frequently.  相似文献   

2.
The risk of foreign animal disease introduction continues to exist despite Canada's strict regulations concerning the importation of animals and animal products. Given the rapidity with which these diseases can spread, especially in areas with dense livestock populations, eradication efforts which rely solely on quarantine and stamping-out measures can present a formidable undertaking. This, combined with growing economic and ethical considerations, has led to renewed interest in the use of vaccination as a tool in controlling foreign animal disease outbreaks. Vaccination has effects at the individual and population levels. Efficacious vaccines reduce or prevent clinical signs without necessarily preventing virus replication. They may also increase the dose of virus needed to establish an infection and/or reduce the level and duration of virus shedding following infection. Vaccine effectiveness within a population is a function of its ability to reduce virus transmission. Transmission is best described by the reproductive ratio, R, which is defined as the average number of new infections caused by one infectious individual. By helping to reduce the R-value below 1, vaccination can be an effective adjunct in abbreviating an outbreak. Nevertheless, vaccination can also complicate serological surveillance activities that follow eradication, if the antibody response induced by vaccination is indistinguishable from that which follows infection. This disadvantage can be overcome by the use of DIVA vaccines and their companion diagnostic tests. The term DIVA (differentiating infected from vaccinated individuals) was coined in 1999 by J. T. van Oirschot of the Central Veterinary Institute, in The Netherlands. It is now generally used as an acronym for 'differentiating infected from vaccinated animals'. The term was originally applied to the use of marker vaccines, which are based on deletion mutants of wild-type microbes, in conjunction with a differentiating diagnostic test. The DIVA strategy has been extended to include subunit and killed whole-virus vaccines. This system makes possible the mass vaccination of a susceptible animal population without compromising the serological identification of convalescent individuals. The DIVA approach has been applied successfully to pseudorabies and avian influenza eradication, and has been proposed for use in foot-and-mouth disease and classical swine fever eradication campaigns. This paper will survey current vaccine technology, the host immune response, and companion diagnostic tests that are available for pseudorabies, foot-and-mouth disease, classical swine fever and avian influenza.  相似文献   

3.
4.
5.
The use of biologics in veterinary medicine has been of tremendous value in safeguarding our animal populations from debilitating and oftentimes fatal disease. This article reviews the principles of vaccination and the extensive quality control efforts that are incorporated into preparing the vaccines. Examples of adverse events that have occurred in the past and how enhanced vigilance at the level of the veterinarian and the veterinary diagnostic laboratory help to curtail these events are discussed. Emphasis on understanding the ecology of viral infections in dogs and cats is introduced, together with the concepts of the potential role of vaccines in interspecies spread of viruses.  相似文献   

6.
7.
8.
9.
Setting up rehabilitation services presents several challenges to the veterinary practitioner. Members of the rehabilitation team need to have a solid knowledge base of acute and chronic orthopedic and neurologic disorders and a knowledge of rehabilitation principles and applications.The working environment has to be adapted to patients with limited mobility, specific equipment and supplies are to be used, and a fee structure should be implemented. This article reviews these logistic aspects of companion animal rehabilitation.  相似文献   

10.
11.
12.
Broiler minibreeder hens were vaccinated for protection against fowl cholera at 12 and 21 weeks of age using several vaccination schemes, which included a live Pasteurella multocida (CU strain) vaccine, two commercial polyvalent fowl cholera oil-based bacterins, and two experimentally prepared polyvalent oil-based bacterins. Some treatment groups received only live or killed vaccines, whereas others received a live vaccine at 12 weeks followed by a killed product at 21 weeks. At 42 weeks of age, all birds that received the live CU vaccine twice or once followed by a bacterin survived challenge. Birds that received killed vaccines only were significantly less protected but still showed a respectable survival rate of 86%. All unvaccinated controls died within 72 hr after challenge. At 72 weeks of age, overall protection was lower than that at 42 weeks, regardless of vaccination treatment. Antibody titers were usually higher in birds that received bacterins than in those receiving live vaccines, yet overall protection was still greater in those birds that received the live cholera vaccine twice.  相似文献   

13.
14.
15.
16.
Augmentation of immunization of cattle Brucella abortus S19 or a B. abortus soluble protein extract (SPEBA) vaccine through administration of recombinant bovine IL 2 (rBoIL 2) was evaluated. Seventy-five heifers were divided among 6 groups that were treated with the following: Group 1, no treatment; Group 2, rBoIL 2 (1microg/kg) on day 0; Group 3, SPEBA (2 mg) on day 0 and week 9; Group 4, SPEBA + rBoIL 2 on day 0, SPEBA on week 9; Group 5, S19 (10(7) CFU) on day 0 and week 9; Group 6, S19 + rBoIL 2 on day 0, S19 only on week 9. Approximately, 6 months after vaccination, cattle were bred by natural service, and at mid-gestation pregnant cattle were challenged intraconjunctivally with 9.1 x 10(5) CFU of virulent B. abortus S2308. Pre- and post-challenge antibody responses were measured by an enzyme-linked immunosorbent assay, a particle concentration fluorescence assay, and the card test. Lymphoproliferation (LP) responses to gamma-irradiated B. abortus and SPEBA antigens were measured in peripheral blood mononuclear cells. After vaccination, antibody responses to B. abortus elevated rapidly in SPEBA- and S19-vaccinates with and without rBoIL 2, however, these responses were significantly (P < 0.05) higher in vaccinates which also received rBoIL 2. Antibody levels for all vaccinated groups had returned to those of negative control groups by the challenge date with the exception of the SPEBA/rBoIL 2 group. In general, LP responses were higher in vaccinated or rBoIL 2-treated cattle than for unvaccinated controls. Challenge of 48 pregnant heifers resulted in abortions in 4/9 of Group 1, 0/9 of Group 2, 4/8 of Group 3, 2/9 of Group 4, 1/7 of Group 5, and 0/6 of Group 6 cattle. Treatment with rBoIL 2 alone (Group 2) provided significant (P < 0.05) protection from infection, abortions and induction of sero-positive status compared to untreated (Group 1) cattle. Co-administration of rBoIL 2 with S19 resulted in significant (P < 0.05) augmentation in onset, duration and magnitude of LP responses to B. abortus antigens following challenge. Characterization of the cytokine response of bovine monocyte-derived macrophages by real-time polymerase chain reaction indicated that in vitro stimulation of these cells with rBoIL 2 resulted in a profound up-regulation of genes encoding tumor necrosis factor-alpha, IL 12p40, and interferon-gamma reflecting activation of the cells. Overall, rBoIL 2-treatment was associated with fewer infections, sero-conversions and a significant (P = 0.02) level of protection against abortion as compared to vaccination alone or no treatment.  相似文献   

17.
The development of a liquid-phase blocking sandwich ELISA (LPBE) to measure antibodies (Ab) produced in cattle with the O, A and C foot-and-mouth disease virus (FMDV) types of commercial vaccines used in Argentina is described. The test was specific: 99% of naïve cattle sera (n = 130) gave titres below log10 = 1.2, and none had a titre above log10 = 1.5. Comparative studies with serum neutralization test (SNT) using sera from cattle which received one or more vaccine doses is reported. The overall rank correlation coefficient (Spearman's , rs) between SNT and LPBE were highly significant (rs > 0.67, P < 0.0001) for all vaccine strains. LBPE Ab titres on sera collected 90 days post vaccination were compared with results of cattle protection tests by applying a logistic regression. The minimum Ab titres at which 85% and 75% of the cattle were protected for each FMDV type were determined in order to interpret field Ab data in terms of protection. Application of this method allows large scale serological examinations to monitor antibody levels in vaccinated animals as an indirect indicator of the FMD control program status in the field. Its use in the evaluation of commercial batches of FMD vaccine is discussed.  相似文献   

18.
The total quantity of use in companion animals is generally believed to be relatively small in comparison with antimicrobial use in food animals. Use in companion animals is principally for treatment, whereas the greater proportion of use in food animals is for prophylaxis, metaphylaxis and growth promotion. Therefore, it is important to collect data on end use in companion animals so that overall estimates of use in companion animals can be generated and separated from estimates for food animals. However, data from antimicrobial use in companion animals are extremely limited and no serious attempts to collect such data have ever been made in the United States. The lack of usage data in is concomitant with the dearth of information on antimicrobial resistance in companion animals. Companion animals have been involved in the transmission to humans of, or become infected with, foodborne zoonotic bacteria such as Salmonella and Campylobacter. Companion animals are an integral part of the ecology of antimicrobial resistance through their contact with food animals and exposure to antimicrobials for disease treatment and through contact with humans and the environment. In the practice of companion animal medicine, antimicrobial use data are important for understanding the potential impact on companion animal heath posed by antimicrobial resistance transferred from food animals, humans and the environment, and the threat to humans and other companion animals posed by antimicrobial use in companion animals. Basic information on the patterns and quantities of antimicrobial use in combination with resistance surveillance data, could help companion animal veterinarians understand the potential for development, or evidence of, an antimicrobial resistance problem in their practices, the role of companion animals in the overall epidemiology of antimicrobial resistance, and for comparison with local, regional, or national data. The combination of data from either a sentinel site system of clinics or a use survey with national data from the pharmaceutical industry should provide sufficient data to credibly estimate the total volume and patterns of antimicrobial use in companion animal medicine. The time and effort for use monitoring or to complete a survey would likely become burdensome. Practice management software now utilized at most companion animal clinics could be used to generate antimicrobial use data as well as patient population data as surrogate for the true population at risk for patient encounters in a companion animal practice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号