首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of rhoA/rho-associated kinase (ROK) signaling pathways in agonist-induced contraction of the rat myometrium was investigated. We measured the [Ca(2+)](i)-force relationship, phosphorylation of myosin regulatory light chains (MLC(20)) in intact tissue and the Ca(2+)-sensitization of force in permeabilized myometrial cells of rat. In measurements of the relationship between [Ca(2+)](i) and tension in intact tissue, Y-27632, a ROK inhibitor, significantly attenuated the carbachol-induced contraction without changing [Ca (2+)](i). Phosphorylation of MLC(20) was increased by carbachol and this increased phosphorylation was blocked by treatment of tissue with Y-27632. In tension measurements of single hyperpermeable cells, carbachol evoked sustained contraction at constant pCa 6.7 and these agonist-induced contractions were decreased by treatment with Y-27632. These results suggest that activation of a ROK-mediated signaling pathway(s) plays an important role in agonist-induced alterations in MLC(20) phosphorylation and force of rat myometrium.  相似文献   

2.
We have previously shown that interleukin-1 beta relaxes vascular smooth muscle by the NO-dependent and independent mechanisms (Takizawa et al.: Eur. J. Pharmacol. 330: 143-150, 1997). In this study, we investigated the mechanism of NO-independent relaxation. Treatment of the rat aorta with interleukin-1 beta for 24 hr inhibited the high-K+ induced contraction by decreasing cytosolic Ca2+ level ([Ca2+]i). The relationship between [Ca2+]i and tension in intact muscle and the pCa-tension curves in permeabilized muscle suggested that Ca2+ sensitivity of contractile element was not changed after the interleukin-1 beta-treatment. After a treatment with interleukin-1 beta for 24 hr, contractile effects of phenylephrine (1 microM-10 microM) were markedly inhibited in the presence of L-NMMA (100 microM) applied to inhibit NO synthesis. A blocker of ATP-sensitive K+ channel, glibenclamide (1 microM), partially recovered the interleukin-1 beta-induced inhibition. In contrast, a blocker of Ca(2+)-activated K+ channel, charybdotoxin (0.1 microM), was ineffective. These results suggest that membrane hyperpolarization due to activation of ATP-sensitive K+ channels may partly be responsible for the NO-independent mechanism of interleukin-1 beta-induced inhibition of vascular smooth muscle contraction.  相似文献   

3.
To characterize the mechanisms of acetylcholine (ACh)-induced vasorelaxation in rabbit renal arteries precontracted with high K+ (100 mM), muscle tension and cytosolic free Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2-loaded arterial strips. In the artery with endothelium, high K+ increased both [Ca2+]i and muscle tension. Addition of ACh (10 microM) during high-K+ induced contraction significantly relaxed the muscle and induced additional increase in [Ca2+]i. In the presence of NG-nitro-L-arginine (L-NAME, 0.1 mM). ACh increased [Ca2+]i without relaxing the muscle. In the artery without endothelium, high K+ increased both [Ca2+]i and muscle tension although ACh was ineffective, suggesting that ACh acts selectively on endothelium to increase [Ca2+]i. 4-DAMP (10 nM) or atropine (0.1 microM) abolished the ACh-induced increase in [Ca2+]i and relaxation. However, pirenzepine (0.1 microM), AF-DX 116 (1 microM) and tropicamide (1 microM) were ineffective. The ACh-induced increase of [Ca2+li and vasorelaxation was significantly reduced by 3 microM gadolinium, 10 microM lanthanum or 10 microM SKF 96365. These results suggest that, in rabbit renal artery, ACh-evoked relaxation of 100 mM K+-induced contractions is mediated by the release of endothelial NO. ACh may stimulates the M3 subtype of muscarinic receptor in the endothelial cells, resulting in the opening of the nonselective cation channels followed by an increase of [Ca2+]i and stimulation of NO synthase.  相似文献   

4.
The aim of this study was to determine the effects of extracellular Ca(2+) concentration ([Ca(2+)](e)) on phagocytosis and intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine polymorphonuclear leukocytes (PMNs). The experiments were performed by using blood samples from parturient paretic and clinically normal parturient cows and manipulating the [Ca(2+)](e) in vitro. Phagocytosis by PMNs (with and without stimulation with phorbol myristate acetate and inhibition with cytochalasin B) and resting [Ca(2+)](i) were significantly lower in parturient paretic cows. Repletion of Ca(2+) in the extracellular media for the samples from these animals increased phagocytosis and resting [Ca(2+)](i). In the blood of clinically normal parturient cows, decreasing the [Ca(2+)](e) decreased phagocytosis and resting [Ca(2+)](i) in PMNs, but increasing the [Ca(2+)](e) did not affect phagocytosis. These results suggest that the hypocalcemic condition of parturient paretic cows in vivo causes decreased phagocytosis and resting [Ca(2+)](i) in PMNs, which may partly contribute to greater susceptibility to infection.  相似文献   

5.
Li L  Li X  Yan J 《Veterinary parasitology》2008,157(1-2):21-33
Toxoplasma gondii (T. gondii) invasion of host cells is a complicated process of interaction between parasites and host cells. In the present study we investigated the alterations of free Ca(2+) concentration ([Ca(2+)](i)) and cytoskeletons in phagocytic and non-phagocytic host cells and arachidonic acid (AA) concentration in cells supernatant during T. gondii invasion. T. gondii invasion induced significant elevation of intracellular [Ca(2+)](i) in phagocytic cells (J774A.1) but not in non-phagocytic cells (L929). Pre-treatment of J774A.1 cells with Phospholipase C (PLC) inhibitor (U73122), or Ca(2+) chelators (EGTA, BAPTA/AM) did not block elevations of [Ca(2+)](i) but the elevations were lower and of shorter duration than that in untreated cells. Pre-treatment of tachyzoites with Phospholipases A (PLA) inhibitors (4-BPB and AACOCF3) resulted in a similar pattern of increasing of [Ca(2+)](i) as that in Ca(2+) chelators treated cells. Agglutinations of microfilaments were observed in J774A.1 cells but not in L929 cells. No changes of microtubules were observed in either cell. Treatment of cells with cytoskeleton inhibitors (colchicines, cytochalasin-D) resulted in reduced cell infection ratios. AA concentration in J774A.1 cells supernatant reached 8.44-fold of basal concentration after T. gondii infection and those in 4-BPB or AACOCF3 pre-treated cells reached 7.70-fold and 8.09-fold of basal concentration, respectively. However, elevation of AA concentrations induced by 4-BPB or AACOCF3 treated tachyzoites were 3.02-fold and 2.65-fold of basal AA concentration. AA concentration in L929 cells supernatant reached 5.02-fold of basal concentration after T. gondii infection and those in 4-BPB or AACOCF3 pre-treated cells reached 4.75-fold and 4.78-fold of basal concentration, respectively. However, elevation of AA concentrations induced by 4-BPB or AACOCF3 treated tachyzoites were 2.06-fold and 2.43-fold of basal AA concentration. Results indicated that elevations of [Ca(2+)](i) and AA induced by T. gondii invasion were from both host cells and parasites. T. gondii invasion activated host cell PLC and triggered the PLC-PKC signal pathway, which resulted in the flowing of extracellular Ca(2+) and the releasing of intracellular Ca(2+) pool. Elevated [Ca(2+)](i) induced reorganization of host cell microfilaments. The invasion also activated secretory PLA(2) (sPLA(2)) and cytosolic PLA(2) (cPLA(2)) of the parasite to release AA, which increased the permeability of cell membrane.  相似文献   

6.
The main purpose of this study was to check whether phyto- and endogenous estrogens influence calcium ion mobilization [Ca(2+)](i) in bovine endometrial cells and whether this action is connected with biological effects i.e. prostaglandin (PG)F(2alpha) production. In our study we used two calcium measurement methods by comparing the microscopic method with widely used quantitative - spectrofluorometric method of [Ca(2+)](i) measurement. We also wanted to confirm whether visualization of calcium ion [Ca(2+)](i) in cells using microscopic method supported by micro image analysis (Micro Image Olympus system) reflects real, qualitative changes in the ion concentration. In both methods a cell-permeable form of fluorescent [Ca(2+)](i) indicator Fura-2 was used. Cultured bovine endometrial epithelial and stromal cells influenced by phorbol-2-myristate-13-acetate (PMA; positive control), estradiol 17-beta (E(2); endogenous estrogen) and active metabolites of phytoestrogens (environmental estrogens) were used as a model to study PGF(2alpha) secretion and [Ca(2+)](i) mobilization in the cells. Equol and para-ethyl-phenol in doses of 10(-8)-10(-6) M increased PGF(2alpha) concentration both in epithelial and stromal cells (P<0.05). In both methods, equol and para-ethyl-phenol did not cause intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P>0.05). Both methods revealed that only E(2) and PMA induced intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P<0.05). The results of both methods were highly correlated (P<0.001; r=0.82 for epithelial cells and r=0.89 for stromal cells). In conclusion, both methods gave approximately the same results and showed that phytoestrogens, in contrast to PMA and E(2), did not cause intracellular [Ca(2+)](i) mobilization in endometrial cells. The obtained results proved that the [Ca(2+)](i) visualization method supported by micro image analysis can produce similar results to the spectrofluorometric method.  相似文献   

7.
Photodynamic agents, due to their selective uptake by tumor cells and photon-dependent selective activation, have immense implications for cancer treatment. The present study provided direct evidence that the photon activation of chloro-aluminum phthalocyanine sulphonate (A1PcS4) in the presence of extracellular Ca2+ caused a rapid increase followed by a sustained increase in intracellular concentration of calcium ion ([Ca2+]i) in a small cell lung carcinoma (SCLC) cell line, SBC-3. The [Ca2+]i increase by photodynamic stimulation was completely inhibited by the removal of extracellular Ca2+ and reintroduction of extracellular Ca2+ immediately led to a rapid elevation of [Ca2+]i. However, the increase was not inhibited by application of Ni2+, nifedipine, or SK&F 96365, a receptor-mediated and voltage-dependent Ca2+ entry blocker. The photosensitizer A1PcS4 alone or light alone (4 min) had no effect on [Ca2+]i. Cytotoxicity examination by trypan blue exclusion test, however, suggested photodynamic stimulation-induced cell injury which was observed in both the presence and the absence of extracellular Ca2+. These results indicate that [Ca2+]i increase may not be mandatory for photodynamic stimulation-induced cell injury. Whether [Ca2+]i increase can accelerate, at least in part, cell death under the physiological condition, whether the mechanism(s) of cell death can be different in the presence and the absence of extracellular Ca2+, and whether [Ca2+]i increase can be totally unrelated to cell death await further work.  相似文献   

8.
Endothelin (ET), derived from the endothelium of blood vessels, is a potent vasoactive peptide. Although it has been reported to be involved in cardiovascular diseases, such as hypertension, the mechanism by which ET evokes vasoconstriction is still unclear. On the other hand, p42/p44 mitogen-activated protein kinase (MAPK) and p38 MAPK are activated by a variety of growth factors and cellular stresses, respectively. However, the role of p42/p44 MAPK and p38 MAPK on the ET-1-induced vasoconstriction is not fully understood. This study was undertaken to determine whether p42/p44 MAPK and p38 MAPK participate in the regulation of vascular smooth muscle contraction by ET-1. The isometric vasoconstriction and intracellular Ca(2+) ([Ca(2+)](i)) were simultaneously measured using CAF-100. Phosphorylation of myosin light chain (MLC) and p42/p44 MAPK, p38 MAPK were determined by Western blots. In rat thoracic aorta, ET-1 induced a sustained contraction. In contrast, [Ca(2+)](i) was decreased with time. Both PD98059, an inhibitor of p42/p44 MAPK, and SB203580, an inhibitor of p38 MAPK, partially attenuated ET-1-induced contractions in concentration-dependent manners. ET-1 increased phosphorylation of both p42/p44 MAPK and p38 MAPK, and PD98059 and SB203580 completely decreased phosphorylation of p42/p44 MAPK and p38 MAPK in response to ET-1 stimulation, respectively. On the other hand, PD98059 and SB203580 did not affect MLC phosphorylation in response to ET-1 stimulation. These results indicate that p38 MAPK, as well as p42/p44 MAPK, may partially regulate the ET-1-induced contraction through a MLC phosphorylation-independent pathway.  相似文献   

9.
We investigated the effect of bradykinin (BK) on isolated equine basilar arterial rings with and without endothelium. BK induced concentration-dependent contraction of resting arterial rings and no relaxation when the rings were precontracted by prostaglandin F. The maximal response and pD2 value were 161.2 ± 28.1% (to 60 m m KCl-induced contraction) and 8.24 ± 0.25 respectively. The cumulative concentration–response curve for BK was not shifted to the right by des-Arg9-[Leu8]-BK (a B1-receptor antagonist), HOE140 (a B2-receptor antagonist) or NPC567 (another B2-receptor antagonist). In four of six basilar arteries, NPC567 induced concentration-dependent contraction. Indomethacin (a cyclooxygenase inhibitor), nordihydroguaiaretic acid (a lipoxygenase inhibitor), quinacrine (a phospholipase A2 inhibitor), tetrodotoxin (a selective blocker of Na+ channels), guanethidine (a nor-adrenergic neuron blocking drug), phentolamine (an α-adrenoceptor antagonist), Nω-nitro- l -arginine ( l -NNA, a nitric oxide (NO) synthase inhibitor) and endothelial denudation did not affect the BK-induced contraction. l -NNA and indomethacin induced contraction and relaxation under resting vascular tone respectively. These results suggest that endothelial cells are not involved in BK-induced contraction and that the contraction is not mediated via activation of known B1 and B2 receptors. Arachidonic acid metabolites and neurotransmitters like norepinephrine and NO might not play a role in BK-induced contraction in equine basilar artery.  相似文献   

10.
In an attempt to explore the functioning of nitric oxide (NO) in pancreatic exocrine cells, we have recently obtained several lines of circumstantial evidence indicating that one of molecular targets of NO is phospholipase C (PLC), the activation of which leads to an increase in the cytosolic Ca2+ concentration ([Ca2+]i) via inositol 1, 4, 5-trisphosphate, IP3. However, whether IP3 is actually produced by NO has not yet been substantiated. The present study was therefore designed to directly measure the intracellular IP3, concentration ([IP3]i) for better understanding of the underlying mechanisms with the help of pharmacological tools. [IP3]i was measured using a fluorescence polarization technique (HitHunter). We obtained the following results: 1) varying concentrations of an NO donor, sodium nitroprusside (SNP), elevated [IP3]i, 2) this elevation was completely inhibited in the presence of the soluble guanylyl cyclase (sGC) inhibitor, 1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one (ODQ), 3) varying concentrations of the cGMP analogue, 8-Br-cGMP, also increased [IP3]i, 4) the cGMP analogue-induced IP3 production was abolished by pretreatment with either a PLC inhibitor, U73122, or a G-protein inhibitor, GP2A, and 5) KT5823, a potent and highly selective inhibitor of cGMP-dependent protein kinase G (PKG), also abolished the IP3 production induced by 8-Br-cGMP. These results suggest that the NO-induced [Ca2+]i increase is triggered by an increase in [IP3]i located downstream from intracellular cGMP elevation. In this intracellular pathway, each sGC, cGMP-dependent PKG, G-protein and PLC were suggested to be involved. The present work provides new insights into the intracellular signaling accelerated by NO. NO triggers a [Ca2+]I increase via cGMP and IP3 in pancreatic acinar cells.  相似文献   

11.
This study investigated the process of PCV2-induced apoptosis and the effect of PCV2 inoculation on calcium homeostasis in piglet lymphocytes in vitro. PCV2-inoculated lymphocytes exhibited chromatin condensation, chromatin segregation, the appearance of membrane-enclosed apoptotic bodies, and DNA fragmentation. Moreover, the proportion of apoptotic cells increased significantly in PCV2-inoculated lymphocytes compared with controls. These results demonstrate that PCV2 induces lymphocyte apoptosis. Some evidence suggests that an alteration in the intracellular free Ca(2+) concentration ([Ca(2+)]i) could cause apoptosis. We measured elevated [Ca(2+)]i in PCV2-inoculated lymphocytes for 12 or 24h compared with controls. Our results support that PCV2-induced apoptosis may be relative to [Ca(2+)]i. In addition, calmodulin (CaM) was increased in PCV2-inoculated lymphocytes for 12h compared with controls. The amount of CaM-dependent protein kinase II (CaMKII) did not change with PCV2 inoculation. We infer that the increased [Ca(2+)]i can bind CaM protein, but functions independently of CaMKII. Inositol 1,4,5-trisphosphate receptor (IP3R)-1 mRNA expression increased with PCV2 inoculation, whereas plasma Ca(2+)-ATP4 mRNA expression decreased. A decreased Ca(2+)-ATP4 level may inhibit Ca(2+) efflux, and the increased IP3R-1 may trigger Ca(2+) release from the endoplasmic reticulum. Both of these changes may contribute to increased [Ca(2+)]i.  相似文献   

12.
Isolated smooth muscle cells from the small intestine of new-born rats were prepared by enzymatic digestion. These cells re-aggregate after 1 day in culture to clusters. The re-aggregates show spontaneous rhythmical contractions at 37 degrees C with a frequency (13.1 +/- 0.8 min-1, n = 49), which is similar to that of the intact smooth muscle layer. The cholinergic agonist carbachol (5 x 10(-5) mol l-1) caused an increase in the frequency of the spontaneous contractions often ending in a permanent contraction. A similar effect was achieved with the thromboxane A2 (TXA2) agonist, U-46619 (10(-5) mol l-1). In contrast, both the TXA2 receptor blocker, Bay u3405 (5 x 10(-4) mol l-1), as well as the Ca2+ channel blocker, verapamil (5 x 10(-5) mol l-1), suppressed the spontaneous contractions. The observed contractility was insensitive against the neuronal blocker tetrodotoxin (10(-6) mol l-1). These analyses of video images were supported by the measurement of relative changes in the intracellular Ca2+ concentration with the Ca(2+)-sensitive dye, fura-2. Spontaneous contractions were paralleled by spikes in the intracellular Ca2+ concentration, which were abolished by Bay u3405, but stimulated by U-46619 or carbachol. In summary, these results obtained at re-aggregates of intestinal smooth muscle cells support the hypothesis of a role of TXA2 in the generation of spontaneous intestinal smooth muscle contractions in vitro.  相似文献   

13.
The keratinocyte, the major component of the epidermis, expresses several proteins that characterize the keratinization during the differentiation. Proliferation and differentiation of cultured human keratinocytes are known to be regulated by the Ca2+ concentration in the culture medium. However, informations about the rat keratinocyte are relatively limited and their physiology is still an open question. To elucidate the characteristics of the rat keratinocyte, we established rat keratinocyte culture system and examined effects of extracellular calcium concentration on the expression of differentiation-related proteins. Keratinocytes were isolated from the newborn rat skin with 0.25% trypsin, followed by separation with a Percoll density gradient. The separated cells were grown in MCDB 153 medium containing several growth factors and Ca(2+)-free fetal bovine serum, then stimulated with Ca2+. Immunoblotting demonstrated strong expression of beta1 integrin in unstimulated cells, suggesting that the primary culture of rat keratinocytes was successfully established. Expression of desmoglein and transglutaminase was increased by Ca2+ stimulation, whereas beta1 integrin expression was decreased in response to increasing concentrations of Ca2+. These observations indicate that cultured rat keratinocytes maintain the ability to differentiate in vitro, which is similar to that of the basal keratinocytes in the epidermis.  相似文献   

14.
以紫花苜蓿幼苗为材料,用聚乙二醇(PEG-6000)作为渗透介质人工模拟干旱条件,外源喷施NO供体硝普钠(SNP)、钙信号试剂CaCl2、NO抑制剂亚甲基蓝(MB)和Ca2+通道阻断剂LaCl3,对紫花苜蓿幼苗光合特征、抗氧化酶活性及过氧化物酶(POD)同工酶图谱进行研究,探讨了渗透胁迫下NO介导的Ca2+信号对紫花苜蓿幼苗光合作用及抗氧化能力的影响。结果表明:在渗透胁迫条件下,施加SNP、CaCl2均能够有效缓解叶片叶绿素a、类胡萝卜素及总叶绿素含量降低,提高叶片净光合速率(Pn)、气孔导度(Gs)及气孔限制值(Ls),而对胞间CO2浓度(Ci)没有缓解作用。SNP、CaCl2及SNP+CaCl2处理提高了幼苗叶片中抗氧化酶活性和脯氨酸含量,降低了丙二醛(MDA)含量。其中共处理时效果最为显著,第4天 SOD、POD、CAT活性较PEG处理升高了39.29%、30.41%和56.24%,脯氨酸含量增加了45.59%,MDA含量降低了45.59%。POD同工酶图谱在第4天时酶谱带数最多,POD活性最强,且SNP+CaCl2共处理下出现新酶带。而添加外源NO的同时添加Ca2+通道阻断剂LaCl3,紫花苜蓿幼苗光合速率、抗氧化酶活性及脯氨酸含量均降低,丙二醛含量增加,添加Ca2+信号的同时施加NO抑制剂MB也具有相同的作用,说明Ca2+信号参与NO信号转导过程并相互作用共同调节渗透胁迫下紫花苜蓿幼苗的生理应答响应。  相似文献   

15.
The contribution of the mitogen-activated protein kinase (MAPK) pathway to the relaxation induced by tamoxifen, a synthetic non-steroidal anti-estrogen, was examined in rat vascular smooth muscle. Tamoxifen (0.1-300 microM) inhibited the contraction induced by endothelin-1 (ET-1, 3 nM) in aortic smooth muscle in a concentration-dependent manner. The inhibitory effect of tamoxifen was not attenuated by 10 microM ICI 182,780, a selective antagonist of estrogen receptors. In the Ca(2+) channel inhibitor verapamil (1 microM)-pretreated strips, tamoxifen also inhibited the contraction induced by ET-1. Both PD098059 and SB203580, inhibitors of MAPK/extracellular signal-regulated kinase (ERK) kinase and p38 MAPK, respectively, inhibited ET-1-induced contraction in aortic smooth muscle. In Western blot analysis with anti-phosphorylated MAPK antibodies, ET-1 (3 nM) enhanced activities of both ERK1/2 and p38 MAPK in aortic muscle strips, which were not attenuated by the treatment with 4 mM EGTA. Tamoxifen (100 microM) inhibited the activities of ERK1/2 and p38 MAPK induced by ET-1 without significant changes in the expression of these kinases. These results suggest that tamoxifen induces relaxation of rat vascular smooth muscle, and that this is, at least in part, mediated by the inhibition of the Ca(2+)-independent MAPK pathway.  相似文献   

16.
The involvement of both intracellular and extracellular calcium, as well as the activation of protein kinase C (PKC), in phorbol myristate acetate (PMA)-stimulated respiratory burst in bovine neutrophils has been studied. PMA significantly stimulated the superoxide anion production by these cells. The increased production of superoxide anion was inhibited by BAPTA/AM, an intracellular calcium ([Ca2+]i) chelator, but not affected by EGTA, an extracellular calcium ([Ca2+]0) chelator. PMA also induced PKC activation, and a PKC inhibitor, calphostin C, blocked the stimulatory effect of PMA on superoxide anion production by the neutrophils. Therefore, we conclude that PMA-induced respiratory burst in bovine neutrophils is [Ca2+]i- but not [Ca2+]0-dependent, and also requires PKC activation.  相似文献   

17.
OBJECTIVE: To determine the effects of induction of capacitative Ca2+ entry on tone in equine laminar arteries and veins. SAMPLE POPULATION: Laminar arteries and veins from 6 adult mixed-breed horses. PROCEDURE: Arteries and veins were isolated and mounted on small vessel myographs for the measurement of isometric tension. Capacitative Ca2+ entry was induced by incubating the vessels with the specific Ca2+-ATPase inhibitor thapsigargin (100nM) in a Ca2+-free physiologic salt solution. Capacitative Ca2+ entry-associated contractile responses were determined by the subsequent addition of 2mM Ca2+ to the solution bathing the vessels; in some experiments, either the voltage-gated Ca2+ blocker diltiazem (10microM) or the putative capacitative Ca2+ entry inhibitor trifluoromethylphenylimidazole (300microM) was added to the bathing solution 15 minutes prior to a second 2mM Ca2+ exposure. The Sr2+ permeability of the capacitative Ca2+ entry pathway in laminar vessels was assessed by exposing the vessels to 4mM Sr2+ after induction of capacitative Ca2+ entry with thapsigargin. RESULTS: Induction of capacitative Ca2+ entry elicited robust contractile responses in laminar veins but did not increase tone in laminar arteries. In laminar veins, capacitative Ca2+ entry-induced contractile responses were unaffected by preincubation with diltiazem, attenuated by trifluoromethylphenylimidazole, and were impermeable to Sr+. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that induction of capacitative Ca2+ entry elicits vasoconstriction in equine laminar veins but not in laminar arteries and should therefore be considered a potential mechanism by which selective venoconstriction occurs in horses during the development of acute laminitis.  相似文献   

18.
Capsaicin-induced relaxation in rabbit coronary artery.   总被引:1,自引:0,他引:1  
In the present study mechanism of inhibitory effects of capsaicin on the contractility of rabbit coronary artery were studied by measurement of isometric tension and intracellular Ca2+ concentration. Capsaicin (1 microM to 30 microM) relaxed the coronary artery pre-contracted with prostaglandin (PG) F2alpha (1 microM) in a concentration-dependent manner. The PGF2alpha-induced increase in intracellular Ca2+ concentration was also inhibited. The effects of capsaicin were readily reversed by washing capsaicin from the bath. Capsaicin-induced relaxation was not attenuated by pretreatment with capsazepine (1 microM), a blocker of vanilloid receptor or ruthenium red (1 microM), a blocker of non-selective cation channel. Previous exposure to a high concentration of capsaicin (100 microM) or repeated application of capsaicin did not eliminate the relaxation response to subsequent application of capsaicin. Increasing the external K+ concentration to 80 mM significantly attenuated the capsaicin-induced relaxation with simultaneous change in intracellular Ca2+ concentration. Pretreatment with iberiotoxin (100 nM), a blocker of Ca2+-activated K+ channel, only partially inhibited the capsaicin-induced relaxation. However, application of 4-aminopyridine (4-AP, 1 mM), a blocker of delayed rectifier K+ current significantly inhibited the capsaicin-induced relaxation with concomitant attenuation of the effect on intracellular Ca2+ concentration. These results indicate that capsaicin may have a direct relaxing effect on the smooth muscle contractility, and relaxation may be due to activation of the 4-AP-sensitive, delayed rectifier K+ channels in the rabbit coronary artery.  相似文献   

19.
The effects of K+ channel blockers and P2Y receptor agonist/antagonist on the vasorelaxation mediated by endothelium-derived hyperpolarizing factor (EDHF) were investigated in the rabbit renal artery. Acetylcholine (ACh, 1 nM-10 microM) induced endothelium-dependent relaxation of arterial rings precontracted with norepinephrine (NE, 1 microM) in a concentration-dependent manner. NG-nitro-L-arginine (L-NAME. 0.1 mM), an inhibitor of NO synthase, partially inhibited the ACh-induced endothelium-dependent relaxation. The ACh-induced relaxation was only partially inhibited by L-NAME whereas combined addition of L-NAME and 30 mM KCl completely inhibited the relaxation. The ACh-induced relaxation observed in the presence of L-NAME was significantly reduced by a combination of iberiotoxin (0.1 microM) and apamin (1 microM), and almost completely blocked by 4-aminopyridine (5 mM). The ACh-induced relaxation was antagonized by P2Y receptor antagonist, cibacron blue (10 and 100 microM) in a concentration-dependent manner. Furthermore, ADPbetaS, a potent P2Y agonist, induced the endothelium-dependent relaxation, and this relaxation was markedly reduced by either the combination of iberiotoxin and apamin or by cibacron blue alone. In conclusion, ACh may activate the release of ATP from endothelial cells which in turn activates a P2Y receptor on the endothelial cells followed by a release of EDHF, resulting in a vasorelaxation via a mechanism that involves activation of both the voltage-gated K+ channels and the Ca2+-activated K+ channels. EY WORDS: ATP, K+ channel, rabbit renal artery.  相似文献   

20.
The mechanism of carbon monoxide (CO)-induced relaxation were investigated in the guinea-pig ileum. CO (10%) inhibited the 40 mM KCl-induced contraction. This effect was antagonized by ODQ (1 microM), a soluble guanylate cyclase inhibitor. In contrast, CO did not inhibit the 40 mM KCl-induced increase in cytosolic Ca2+ level ([Ca2+]i). Cumulative addition of KCl induced a graded increase in both [Ca2+]i and muscle tension. In the presence of CO, the increase in muscle tension was attenuated whereas the increase in [Ca2+]i was only slightly decreased. Thus, the [Ca2+]i-tension relationship constructed by cumulative addition of KCl shifted downwards in the presence of CO. Using the patch clamp, CO was found to have little effect on the peak Ba currents (I(Ba)) when voltage was stepped from -60 mV to 0 mV. From these results, we conclude that CO inhibits contraction of guinea-pig ileum mainly by the decrease in the sensitivity of contractile elements to Ca2+ via a cyclic GMP-dependent pathway but not by the inhibition of L-type Ca2+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号