首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term success of forest management depends primarily on the sustainability of timber production. In this study we analyse the population structure, tree age and wood increment of Malouetia tamaquarina (Aubl.) (Apocynaceae) to define a species-specific minimum logging diameter (MLD) and felling cycle by modelling volume growth. Contrary to other timber species in the nutrient-rich white-water floodplains forests (várzea), M. tamaquarina grows in the subcanopy of old-growth várzea forests. The wood of this species is utilized by local inhabitants in the floodplains for handicraft. In 35 plots of 25 m × 50 m we measured diameter at breast height (DBH) and tree height of all trees taller than 150 cm height. From 37 individuals with DBH > 15 cm we sampled two cores by increment borers to determine the wood density, tree age and diameter increment rates. In the management area of a várzea settlement with about 150 ha recently harvested trees of M. tamaquarina have been recorded and DBH was measured. The species presents an inverse J-shaped diameter distribution indicating that the species is obviously regenerating in the old-growth forests. Tree-ring analysis indicates a mean age of 74.5 years for a DBH of 22.7 cm for a studied population comprising 37 trees with maximum ages of up to 141 years for an individual with a DBH of 45.7 cm. The tree species has low annual diameter increment rates (3.16 ± 0.6 mm) despite a low wood density (0.36 ± 0.05 g cm−3). The volume growth model indicates a MLD of 25 cm and a felling cycle of 32.4 years. In the management area 35 trees with a mean DBH of 24 cm were recorded, similar to the defined MLD. The abundance of trees above the MLD is 2.7 trees ha−1, or 405 trees, when extrapolated to the whole management area. Considering a felling cycle of 32.4 years (annual production unit of 4.63 ha) this results in total of 12.5 harvestable trees, almost three times less than actually harvested. The actual practice of harvesting M. tamaquarina risks the overexploitation of this slow-growing species.  相似文献   

2.
Ficus insipida Willd. (Moraceae) is a fast growing tree species of early successional stages in the Amazonian nutrient-rich white-water floodplains (várzea). The species is one of the most economically important low-density wood species in the community-based forest management project in the Mamirauá Sustainable Development Reserve (MSDR) in Central Amazonia, where timber species are managed using a polycyclic selection system with a minimum logging diameter (MLD) of 50 cm and a cutting cycle of 25 years. In this study we analyze the floristic composition, stand structure and forest regeneration of a natural 20 year-old stand at an early successional stage and we model tree growth of diameter, height and volume of F. inspida based on tree-ring analysis to define management criteria. The volume growth model indicates that the preferred period for logging should be at a tree age of 17 years when the current annual volume increment peaks. This age corresponds to a diameter of 55 cm, which would be an appropriate MLD.  相似文献   

3.
The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites across southern Brazilian Amazonia, we report generally higher landscape-scale densities and smaller population-level mean diameters in eastern forests compared to western forests, where most commercial stocks survive. Density of trees ≥20 cm diameter varied by two orders of magnitude and peaked at 1.17 ha−1. Size class frequency distributions appeared unimodal at two high-density sites, but were essentially amodal or flat elsewhere; diameter increment patterns indicate that populations were multi- or all-aged. At two high-density sites, conventional logging removed 93–95% of commercial trees (≥45 cm diameter at the time of logging), illegally eliminated 31–47% of sub-merchantable trees, and targeted trees as small as 20 cm diameter. Projected recovery by commercial stems during 30 years after conventional logging represented 9.9–37.5% of initial densities and was highly dependent on initial logging intensity and size class frequency distributions of commercial trees. We simulated post-logging recovery over the same period at all sites according to the 2003 regulatory framework for mahogany in Brazil, which raised the minimum diameter cutting limit to 60 cm and requires retention during the first harvest of 20% of commercial-sized trees. Recovery during 30 years ranged from approximately 0 to 31% over 20% retention densities at seven of eight sites. At only one site where sub-merchantable trees dominated the population did the simulated density of harvestable stems after 30 years exceed initial commercial densities. These results indicate that 80% harvest intensity will not be sustainable over multiple cutting cycles for most populations without silvicultural interventions ensuring establishment and long-term growth of artificial regeneration to augment depleted natural stocks, including repeated tending of outplanted seedlings. Without improved harvest protocols for mahogany in Brazil as explored in this paper, future commercial supplies of this species as well as other high-value tropical timbers are endangered. Rapid changes in the timber industry and land-use in the Amazon are also significant challenges to sustainable management of mahogany.  相似文献   

4.
Defining the spatial arrangement and length of the cutting cycle in a logged area is crucial for reconciling potential conflicts between timber yields and maintenance of ecosystem services in natural forests. In this study, we investigated long-term impacts of clear-fell logging on timber production and tree species diversity in a subtropical forest on the Ryukyu Islands, using an individual-based simulation model. We assumed six logging scenarios defined by combinations of forest type and regeneration processes, which acted as surrogates for spatial scales of clear-fell logging. These scenarios were simulated under cutting cycles ranging from 20 to 150 years. Short-cutting cycles resulted in dominance by the sprouting species Castanopsis sieboldii. The compositional shift was accelerated by the lack of seed dispersal from surrounding forest areas. The simulations demonstrated that a sustainable logging regime maintaining both yield and tree species diversity requires a cutting cycle longer than 50 years. The simulation results also suggest that the trade-off between the recovery of tree species diversity and timber production is favored more in stands surrounded by mature forest than in isolated stands or stands surrounded by immature forest. Ecological risk assessments based on model simulations provide an alternative to current forest management practices that rely on empirical knowledge.  相似文献   

5.
Although tidal floodplain forests represent the oldest commercial logging frontier in the Amazon, tree demography analyses are lacking. Consequently, the accurate evaluation of impacts of past use and the development of ecologically sound forest management has lagged. To address that gap, we combine matrix model methods with data from interviews with tidal floodplain smallholders regarding land use and ecological knowledge. Here we examine the population dynamics of 8 common tidal floodplain species and explore the link between species population ecology and past, present, and future timber use.Despite the generally high timber stocks due to the dominance of Mora paraensis, these tidal floodplain forests offer challenges to management similar to those seen in tropical forests elsewhere, including low recruitment and species-specific tree growth rates, population densities and size distributions. Furthermore, species population ecology and survey results indicate that the long legacy of forest use in the tidal floodplain forests will influence the future of forest use and management, negatively impacting some species (e.g., Virola surinamensis) while likely benefiting others (e.g., M. paraensis). The observed diameter distributions of species least harvested in the past (e.g., M. paraensis, Licania heteromorpha) follow those derived from stable stage distributions. For other historically harvested species (e.g., Carapa guianensis, V. surinamensis), a larger number of harvest-sized trees for most species would be expected under unlogged conditions, a result corroborated by survey results indicating that maximum log size of long-used timber species has decreased over the past decades.While timber extraction in the Amazon Estuary has endured for centuries, our results suggest long-term timber use does not necessarily entail sustainability; a long history of timber harvesting can also indicate a gradual process of resource depletion as preferred species are sequentially exhausted. If current practices are left unchanged, the prospects for long-term management are likely to decrease further as the densities of preferred high-value species (C. guianensis, V. surinamensis, P. filipes) fall to levels that make management economically unattractive.  相似文献   

6.
Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (<1 adult tree ha−1) or may be locally rare. In the Brazilian Amazon, many of the most highly valued timber species occur at extremely low densities yet are intensively harvested with little regard for impacts on population structures and dynamics. These include big-leaf mahogany (Swietenia macrophylla), ipê (Tabebuia serratifolia and Tabebuia impetiginosa), jatobá (Hymenaea courbaril), and freijó cinza (Cordia goeldiana). Brazilian forest regulations prohibit harvests of species that meet the legal definition of rare – fewer than three trees per 100 ha – but treat all species populations exceeding this density threshold equally. In this paper we simulate logging impacts on a group of timber species occurring at low densities that are widely distributed across eastern and southern Amazonia, based on field data collected at four research sites since 1997, asking: under current Brazilian forest legislation, what are the prospects for second harvests on 30-year cutting cycles given observed population structures, growth, and mortality rates? Ecologically ‘rare’ species constitute majorities in commercial species assemblages in all but one of the seven large-scale inventories we analyzed from sites spanning the Amazon (range 49–100% of total commercial species). Although densities of only six of 37 study species populations met the Brazilian legal definition of a rare species, timber stocks of five of the six timber species declined substantially at all sites between first and second harvests in simulations based on legally allowable harvest intensities. Reducing species-level harvest intensity by increasing minimum felling diameters or increasing seed tree retention levels improved prospects for second harvests of those populations with a relatively high proportion of submerchantable stems, but did not dramatically improve projections for populations with relatively flat diameter distributions. We argue that restrictions on logging very low-density timber tree populations, such as the current Brazilian standard, provide inadequate minimum protection for vulnerable species. Population declines, even if reduced-impact logging (RIL) is eventually adopted uniformly, can be anticipated for a large pool of high-value timber species unless harvest intensities are adapted to timber species population ecology, and silvicultural treatments are adopted to remedy poor natural stocking in logged stands.  相似文献   

7.
Silvicultural treatments are often needed in selectively logged tropical forest to enhance the growth rates of many commercial tree species and, consequently, for recovering a larger proportion of the initial volume harvested over the next cutting cycle. The available data in the literature suggest, however, that the effect of silvicultural treatments on tree growth is smaller in dry forests than in humid forest tree species. In this study, we analyze the effect of logging and application of additional silvicultural treatments (liana cutting and girdling of competing trees) on the growth rates of future crop trees (FCTs; i.e., trees of current and potentially commercial timber species with adequate form and apparent growth potential). The study was carried out in a tropical dry forest in Bolivia where a set of 21.25-ha plots were monitored for 4 years post-logging. Plots received one of four treatments that varied in intensity of both logging and silvicultural treatments as follows: normal (reduced-impact) logging; normal logging and low-intensity silviculture; increased logging intensity and high-intensity silviculture; and, unlogged controls. The silvicultural treatments applied to FCTs involved liberation from lianas and overtopping trees. Results showed that rates of FCT stem diameter growth increased with light availability, logging intensity, and intensity of silvicultural treatments, and decrease with liana infestation degree. Growth rate increment was larger in the light and intensive silvicultural treatment (22–27%). Long-lived pioneer species showed the strongest response to intensive silviculture (50% increase) followed by total shade-tolerant species (24%) and partial shade-tolerant species (10%). While reduced-impact logging is often not sufficient to guarantee the sustainability of timber yields, application of silvicultural treatments that substantially enhanced the growth rates of FCTs will help move the management of these forests closer to the goal of sustained yield.  相似文献   

8.
In uneven-aged conifer–broadleaved mixed forests in Hokkaido, northern Japan, single-tree selection cutting has been a common management practice since the early twentieth century. This practice is expected to produce timber without major changes in stand structure or tree species composition. The demographic response of forests to this practice has often been unexpected, and degradation of stand properties has been widely observed. We propose here a sustainable management regime of selection cutting, based on an individual-based forest dynamics simulation model, SORTIE-ND. Our simulations, based on demographic data from 15 long-term monitoring stands, suggest that selection cutting using a lower cutting intensity together with a longer rotation period and reduced removal of small trees and conifer species is more appropriate than traditional systems in terms of maintaining stand structure and tree species composition, as well as being profitable financially. Supplemental regeneration practices, which can counter accidental mortality incurred during harvesting operations, would also be necessary to ensure tree recruitment.  相似文献   

9.
This study assessed the sustainability of selection cutting in a community forest (CF) in Bhutan. The harvesting approach differed from cable crane logging operations in an adjacent commercially managed forest by creating much smaller canopy openings. This had many implications for natural regeneration of preferred species. The study was conducted in a late successional broadleaved CF containing 32 genera of tree species dominated by Quercus and Castanopsis and managed for timber, firewood, non-wood forest products and forest grazing. The study was based on a comparison of two forest inventories to assess forest structure and regeneration, a study of stumps to quantify harvesting intensities, and a household survey to quantify livestock holdings and grazing patterns. The study examined different intensities of selection cutting in three blocks of the CF and found that higher intensities of selection cutting did not have a negative impact on: (a) natural regeneration of seedlings and saplings of preferred timber species; (b) the diameter distribution of all species and use categories except for Quercus; (c) the diversity of tree genera; and (d) the percentage of remaining trees with favorable bole shape and form. These results contrasted with findings in the adjacent commercially managed forest. Community management of broadleaved forests with selection cutting appeared to be sustainable and avoid some of the unresolved silvicultural problems associated with commercially managed forests in Bhutan. However more research is needed on the sustainable management of Quercus spp.  相似文献   

10.
我国红松大径级用材林近自然培育探讨   总被引:1,自引:0,他引:1  
红松是地带性森林植被阔叶红松林的建群种,其木材力学强度适中,纹理通直,花纹美观,材质强韧,不易开裂、变形,耐腐朽力强,为我国珍贵用材树种.通过近自然经营可以达到低成本培育大径材近自然林的目的.文中分析了我国红松大径材林培育现状及存在问题,并从红松的生物和生态学特性、木材利用价值方面阐述了大径级用材林近自然培育的适用性,...  相似文献   

11.
Seed production in tropical timber trees is limited by abiotic resources, pollination and pre-dispersal seed predation. Resource availability is influenced by the number of competing trees and by lianas that often reach high densities in disturbed parts of tropical forests. The distance between conspecific trees affects pollination efficiency and seed predation intensity, and may therefore indirectly affect the long-term sustainability of selective logging. Here we investigate how reproductive status and the number of seeds dispersed per tree are affected by liana load, distance to the nearest conspecifics, number of competing neighbours and tree diameter in the timber trees Cariniana ianeirensis and Terminalia oblonga. The study is based on a large-scale silvicultural experiment in lowland Bolivia. We found that the reproductive status of the two species was negatively correlated with liana cover and positively with tree diameter. In C. ianeirensis the most liana-infested trees dispersed fewer seeds. In T. oblonga the intensity of pre-dispersal seed predation decreased with distance to the nearest conspecifics. There was no evidence that seed viability or seed production decreased with distance to nearest conspecifics in either species as would be expected if isolation resulted in increased self-pollination. Our results indicate that reproduction can be severely reduced in timber trees if the largest, most healthy and least liana-covered trees are logged, but that liana cutting on the remaining seed trees can considerably improve seed production. In some species seed production may be further improved by ensuring that seed trees are located far apart.  相似文献   

12.
Carbon is continuously being removed from the atmosphere by photosynthesis and stored in carbon pools(live,dead,and soil carbon)of forest ecosystems.However,carbon stock in dead wood and of trees with diameters at breast height(dbh)between 5 and 10 cm is often not considered in many studies carried out in the Congo Basin Forest.The relationship between tree diversity,life-forms and carbon stocks has received little attention.This study was carried out on the outskirts of Deng Deng National Park(DDNP)to determine tree diversity(dominant families,species richness and Shannon index),assess carbon stocks in the five carbon compartments(living tree,understory,fine roots,dead wood and litter)as well as to analyze the relationship between(1)carbon stocks and tree diversity;and,(2)between carbon stock and life-forms.The Shannon index of trees≥10 cm dbh ranged from 2.6 in riparian forest to 4.3 in secondary forest;and for the tree between 5 and 10 cm,it ranged to 1.56 in riparian forest to 3.68 in the secondary forest.The study site housed 16 species,7 genera and 3 families which are only found in trees of dbh between 5 and 10 cm.The average total carbon stock of the five compartments varied from 200.1 t ha-1 in forest residues to 439.1 t ha-1 in secondary forest.Dead wood carbon stock varied from 1.2 t ha-1 in riparian forests to 12.51t ha-1 in agroforests.The above ground carbon stocks for trees with diameter between 5 and 10 cm varied from 0.7 t ha-1 in young fallow fields to 5.02 t ha-1 in old secondary forests.This study reveals a low but positive correlation between species richness and total carbon stocks,as well as a significant positive relationship between life-forms and total carbon stocks.The findings highlight the need for more data concerning carbon content of dead wood,carbon of trees≥5 cm<10 cm dbh and the relationship between carbon stocks and tree diversity from other areas of the Congo Basin for a good understanding of the contribution of tropical forests to climate change mitigation.  相似文献   

13.
A major impediment to the sustainable management of tropical dry forests in Bolivia is the scarcity of natural regeneration of commercial timber tree species. Where regeneration is present, true seedlings of many species are outnumbered by vegetative sprouts from roots, broken stems, and the stumps of felled trees. This study evaluates the importance of resprouts promoted by logging operations for the regeneration of commercially important canopy tree species. The objectives of the study were: (1) to characterize stump and root sprouting behaviors of canopy tree species harvested for timber; (2) to quantify the effect of logging on relative abundances and growth rates of stump sprouts, root sprouts, and true seedlings; (3) to relate the species-specific probabilities of stump sprouting to stump diameter and stump height; and (4) to explore how sprouting varies with the ecological requirements of canopy tree species. The study was carried out 1–5 years after logging of a privately owned land in a Bolivian tropical dry forest. Twenty-seven of the 31 species monitored resprouted at least occasionally, among which Centrolobium microchaete (Leguminosae-Fabaceae) and Zeyheria tuberculosa (Bignoniaceae) were the most frequent stump sprouters, and Acosmium cardenasii (Leguminosae-Fabaceae) and C. microchaete were the most frequent root sprouters. In all species the number of sprouts declined with increasing stump diameter and stump height. The probability of stump resprouting differed among species but did not vary consistently with stump diameter, except in Z. tuberculosa in which it declined. Approximately 45% of juveniles <2 m tall of canopy tree species originated from root or stem sprouts. Light-demanding species tended to regenerate more from seeds and root sprouts than from stumps. Seedling densities were higher in microsites opened by logging, while root and stem sprouts were equally common across microsites. Given their abundance and the fact that root and stem sprouts at least initially grew faster than true seedlings, we conclude that vegetative regeneration in this tropical dry forest is an important mode of post-logging regeneration especially for species that regenerate poorly from seed. Resprout management should be considered as a potentially effective strategy for the procurement of regeneration following logging, especially for species that do not readily recruit from seed.  相似文献   

14.
热带人工用材林研究综述*   总被引:5,自引:0,他引:5  
在对速生丰产林、速生丰产用材林、工业人工林和人工用材林的概念进行辨析的基础上 ,总结了世界热带人工用材林发展的特点 ,综述了热带人工用材林在政策法规、种苗繁育、造林和经营技术、生产力和轮伐期、立地质量监测和评价、森林病虫害和生物多样性、木材材性和木材工业 7个方面的最新进展 ,最后提出了调整人工用材林发展政策 ;加强生产技术研究和产业带建设 ,提高公众参与程度 ;充分利用市场手段 ,鼓励多元投资主体 ,发展非公有制林业 3条建议以发展我国热带人工用材林产业。  相似文献   

15.
Carapa guianensis Aublet. is a tropical tree with strong multiple-use characteristics, and is valued for both the high quality oil extracted from its seeds and as a timber resource. This study compares the population structure of this economically important rainforest tree in two contrasting forest types: occasionally inundated and terra firme forests. Main study objectives were (a) to assess the density, spatial distribution, and size class structure of C. guianensis in these two forest types and (b) to use patterns of abundance, distribution and demographic structure to help infer key demographic stages or ecological variables that merit special focus for management. Four 400 m × 400 m plots, two in each forest type, were established to determine distribution and density patterns of C. guianensis ≥10 cm diameter at breast height (dbh) at the landscape level, and 32 10 m × 10 m subplots were randomly nested within each of the larger plots to measure individuals <10 cm dbh. Larger individuals (≥10 cm dbh) were found at higher densities in occasionally inundated forest than in terra firme forest: 25.7 trees ha−1 and 14.6 trees ha−1, respectively. Mean density of C. guianensis individuals <10 cm dbh was also higher in occasionally inundated forests, but variation of regeneration density among the subplots was high. Spatial distribution methods revealed a tendency toward clumping in both forest types, and both had similar size class structures, suggesting that both environments are suitable for C. guianensis. This new finding illustrates the potential for C. guianensis management in terra firme forests. High densities and clumped distributions in both forest types are also indices favorable for sustainable species management. Finally, several ecological variables (tree density and reproductive potential) were sufficiently different between terra firme and occasionally inundated forests to recommend stratification by forest type when conducting further studies on key ecological and management variables of C. guianensis.  相似文献   

16.
In the last three decades, Amazon tropical forests have experienced high rates of deforestation, both by clearing for agriculture and by logging. In this study, we use computer simulations to examine the potential effects of forest logging on genetic diversity and demographic recovery (basal area development) of four neotropical tree species over a time frame reflecting multiple logging events. The study species, Bagassa guianensis Aubl., Hymenaea courbaril L., Manilkara huberi (Ducke) Chevalier, and Symphonia globulifera L.f., are all taxa which are commonly exploited for timber in the Brazilian Amazon. The simulations were parameterized using empirical data from field studies in the Tapajós National Forest, Pará State, Brazil, including genotypes at microsatellite loci, demography, ecology and growth for each species. Eight scenarios, combining two different cutting cycles and two minimum cutting diameters, were examined for each of the four species. The scenarios represent the actual forest practices used in Brazil and French Guiana (cutting diameter 45 and 60 cm, and cutting cycle of 30 and 65 years, respectively). Logging scenarios were applied for six cutting cycles, and final genetic and demographic data were compared to baseline data from corresponding control scenarios. At the end of the simulated period the basal area was strongly reduced under all conditions in B. guianensis, H. courbaril, and M. huberi. In only two scenarios was a species able to recover its basal area following logging (S. globulifera with both 45- and 60-cm cutting diameters under a 65-year cutting cycle). In the logging scenarios, all species showed a loss of alleles and genotypes and an increased genetic distance (calculated between each population at the start and the end of the simulations). These effects were higher under the most intensive logging cycles (30 years, 45 cm). However, effective number of alleles, expected and observed heterozygosities, and the fixation index were little affected by the logging simulations. Over all, we conclude that, even under very optimistic conditions for growth and recruitment, current logging practices are not sustainable in terms of basal area. Our simulations show that different species respond differently to logging, both demographically and genetically. No single set of logging parameters can be applied to the forest as a whole. Rather, forest management practices must be species-specific, taking into account not only growth parameters but also ecological and reproductive variables, in order to move toward long-term forest sustainability.  相似文献   

17.
Complex mixed-species forests are the focus of conservation efforts that seek to maintain native biodiversity. However, much of this forestland is privately owned and is managed for timber income as well as for conservation. Management of these high-diversity forests is particularly difficult when only one tree species produces the majority of high-value timber. We examined the past and current management of two regions which have those characteristics: Massachusetts, USA, with red oak (Quercus rubra L.) as the key timber species, and Quintana Roo, México, with big-leaf mahogany (Swietenia macrophylla King) as the most valuable species. These regions have different ecological characteristics, forest ownership types, landowner income, and importance of timber in total income, yet the silvicultural approach (low-intensity selective cutting) is surprisingly similar, and is generally failing to provide the conditions needed for regeneration and growth of key species. In both situations, the reluctance to harvest low-value species and interest in minimizing forest disturbance complicates management. Successful balance of timber harvest and forest conservation may be an important factor in preventing conversion of these lands to agriculture or residential development, but socioeconomic conditions (property tax policies and landowner affluence) play an important part in the outcome.  相似文献   

18.
How can we accommodate the diversity in tree species and sizes in mixed-species/size/age stands in the sustainable management of natural forests and woodlands in Africa for diverse timber and non-timber forest products and services, and during rehabilitation of degraded forests? The evergreen moist tropical to warm-temperate forests, from the equator to 34°S, generally function through relative shade tolerance. The tropical, strongly seasonal, drier deciduous woodlands generally function through adaptation to fire and/or grazing/browsing. Silvicultural systems, when implemented, are often not aligned with the ecological characteristics of the particular forest systems or the specific targeted species. This paper presents the concept of using the basic disturbance–recovery processes, with recovery development via stand development stages, as the basis for the development of silvicultural systems suitable for maintenance of forest complexity. Grain analysis and stem diameter distributions, analysed from resource inventories, are used to determine the specific shade- or fire-tolerance characteristics of key economical and ecological tree species. The gained knowledge of the ecosystem and species characteristics (including modes of regeneration, i.e. from seed or vegetative regrowth) and processes is used to simulate the ecological disturbance–recovery processes through the development of mixed silvicultural systems, such as a single-tree selection system, a group felling system and a coppice management system in the same forest. Very similar concepts are used to develop rehabilitation strategies to recover the processes towards regrowth stands of diverse species and structure: through stands of introduced plantations and invader tree species; and through early regrowth stages in deciduous woodlands and evergreen forests, after fire, slash-and-burn traditional agriculture, charcoal production or open-cast mining.  相似文献   

19.
论中国桉树发展的贡献和可持续经营策略   总被引:3,自引:0,他引:3  
我国最早于1890年引进桉树,刚开始主要作为庭院和四旁绿化树种,20世纪50年代在粤西和桂南大面积试种成功后,逐步推广作为南方主要造林树种.20世纪80年代,我国开始大规模种植桉树,1986年,全国桉树人工林面积达46.6万hm2,进入21世纪后,桉树发展迅猛,2015年达450万hm2,年产木材3000万m3,占全国商品林木材产量的26.9%,为保障我国木材安全做出了重要贡献.桉树产业已形成包括种苗、肥料、制材、制浆造纸、人造板、生物质能源和林副产品等完整的产业链,年总产值达3000亿元.发展桉树人工林具有非常重要的意义:一是缓解我国木材供应紧张局面,减少对外依存度,以保障国家木材安全;二是桉树产业已形成完整的产业链,构成国民经济不可或缺的一部分;三是对提高森林碳汇、发挥气候调节、完善森林的生态和防护功能具有重要意义;四是重要的民生林业,促进林农增收和农村致富.桉树科学发展的关键在于可持续经营.首先必须更新观念:由木材生产为主向木材生产与环境保护并重转化,由封闭式经营向开放式经营转化,由传统的永续利用向森林可持续经营转化.同时,必须推行以下可持续经营的技术措施:(1)立地与树种、品种相匹配;(2)适当的人工混交林措施;(3)进行科学的植被管理;(4)改进造林技术;(5)控制病虫害.  相似文献   

20.

Timber use in central Europe is expected to increase in the future, in line with forest policy goals to strengthen local wood supply for CO2-neutral energy production, construction and other uses. Growing stocks in low-elevation forests in Switzerland are currently high as exemplified by the Swiss canton of Aargau, for which an average volume of 346 ± 16 m3 ha−1 was measured in the 3rd Swiss National forest inventory (NFI) in 2004–2006. While this may justify a reduction of growing stocks through increased timber harvesting, we asked whether such a strategy may conflict with the sustainability of timber production and conservation goals. We evaluated a range of operationally relevant forest management scenarios that varied with respect to rotation length, growing stock targets and the promotion of conifers in the regeneration. The scenarios aimed at increased production of softwood, energy wood, the retention of potential habitat trees (PHTs) and the conversion to a continuous cover management system. They were used to drive the inventory-based forest simulator MASSIMO for 100 years starting in 2007 using the NFI sampling plots in Aargau. We analyzed model outputs with respect to projected future growing stock, growth, timber and energy yield and harvesting costs. We found growing stock to drop to 192 m3 ha−1 in 2106 if business-as-usual (BAU as observed between the 2nd and 3rd NFI) timber volumes were set as harvesting targets for the whole simulation period. The promotion of conifers and a reduction of rotation lengths in a softwood scenario yielded 25% more timber over the whole simulation period than BAU. An energy wood scenario that reduced growing stock to 200 m3 ha−1 by 2056 and promoted the natural broadleaved regeneration yielded 9% more timber than BAU before 2056 and 30% less thereafter due to decreasing increments. The softwood scenario resulted in higher energy yield than the energy wood scenario despite the lower energy content of softwood. Retaining PHT resulted in a reduction of timber harvest (0.055 m3 ha−1 yr−1 per habitat tree) and higher harvesting costs. Continuous cover management yielded moderate timber amounts throughout the simulation period, yet sustainably. Considering climate change, we discuss the risks associated with favoring drought- and disturbance-susceptible conifers at low elevations and emphasize that continuous cover management must allow for the regeneration of drought-adapted tree species. In conclusion, our simulations show potential for short-term increases in timber mobilization but also that such increases need to be carefully balanced with future forest productivity and other forest ecosystem services.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号