首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In eukaryotic cells directional sensing is mediated by heterotrimeric guanine nucleotide-binding protein (G protein)-linked signaling pathways. In Dictyostelium discoideum amoebae and mammalian leukocytes, the receptors and G-protein subunits are uniformly distributed around the cell perimeter. Chemoattractants induce the transient appearance of binding sites for several pleckstrin homology domain-containing proteins on the inner face of the membrane. In gradients of attractant these sites are persistently present on the side of the cell facing the higher concentration, even in the absence of a functional actin cytoskeleton or cell movement. Thus, the cell senses direction by spatially regulating the activity of the signal transduction pathway.  相似文献   

3.
Planarian flatworms can regenerate heads at anterior-facing wounds and tails at posterior-facing wounds throughout the body. How this regeneration polarity is specified has been a classic problem for more than a century. We identified a planarian gene, Smed-betacatenin-1, that controls regeneration polarity. Posterior-facing blastemas regenerate a head instead of a tail in Smed-betacatenin-1(RNAi) animals. Smed-betacatenin-1 is required after wounding and at any posterior-facing wound for polarity. Additionally, intact Smed-betacatenin-1(RNAi) animals display anteriorization during tissue turnover. Five Wnt genes and a secreted Frizzled-related Wnt antagonist-like gene are expressed in domains along the anteroposterior axis that reset to new positions during regeneration, which suggests that Wnts control polarity through Smed-betacatenin-1. Our data suggest that beta-catenin specifies the posterior character of the anteroposterior axis throughout the Bilateria and specifies regeneration polarity in planarians.  相似文献   

4.
Among the ganglion cells in the rabbit's retina there is a class that responds to movement of a stimulus in one direction, and does not respond to movement in the opposite direction. The same directional selectivity holds over the whole receptive field of one such cell, but the selected direction differs in different cells. The discharge is almost uninfluenced by the intensity of the stimulus spot, and the response occurs for the same direction of movement when a black spot is substituted for a light spot.  相似文献   

5.
6.
The objective of this study was to determine the direction of membrane lipid flow in locomoting cells. The plasma membrane of human polymorphonuclear leukocytes was stained with a fluorescent lipid analog dihexadecanoyl indocarbocyanine. A line was photobleached on the cell surface perpendicular to the direction of cell motion. Low-light-level fluorescence microscopy and digital image-processing techniques were used to analyze a series of images taken at short intervals after photobleaching. The bleached line remained visible for about 5 seconds before being erased by diffusional recovery. Examination of fluorescence intensity profiles allowed a comparison to be made between the velocities of line and cell movement. Results indicate that the bleached line moves forward with the same velocity as the cell during locomotion, refuting the retrograde lipid flow model of locomotion. Instead, the plasma membrane lipid appears to move forward according to either the unit movement of membrane or the tank track model of locomotion.  相似文献   

7.
The Rho family of small guanosine triphosphatases regulates actin cytoskeleton dynamics that underlie cellular functions such as cell shape changes, migration, and polarity. We found that Smurf1, a HECT domain E3 ubiquitin ligase, regulated cell polarity and protrusive activity and was required to maintain the transformed morphology and motility of a tumor cell. Atypical protein kinase C zeta (PKCzeta), an effector of the Cdc42/Rac1-PAR6 polarity complex, recruited Smurf1 to cellular protrusions, where it controlled the local level of RhoA. Smurf1 thus links the polarity complex to degradation of RhoA in lamellipodia and filopodia to prevent RhoA signaling during dynamic membrane movements.  相似文献   

8.
屠宰健康荷斯坦奶牛,制备乳腺组织冰冻切片,免疫荧光双重标记检测,比较单克隆和多克隆α5、β1亚基一抗的特异性(FITC标记二抗),用SMMHC多克隆一抗,TRITC标记二抗特异标识肌上皮细胞来辅助定位靶信号,Hoechst33258复染细胞核,在激光共聚焦显微镜下连续断层扫描并拍照。结果表明,借助对肌上皮细胞和细胞核染色定位清晰可见乳腺结构,α5、β1亚基主要分布在导管和腺泡腔上皮细胞膜、外围肌上皮细胞膜和间质中的成纤维细胞膜上,前者在面向腔和靠近基膜的细胞顶侧和基底侧表达均较强,后者仅在基底侧细胞膜上。对于具有极性分布的细胞膜抗原单克隆一抗定位更准确。α5、β1亚基定位在相同区域表明,α5β1异二聚体具有在导管和腺泡基底侧极性分布的表达特点,α5亚基在面向导管和腺泡腔的上皮细胞顶膜上表达,而β1亚基不表达或弱表达,显示该区域存在非α5β1异二聚体形式的α5亚基。  相似文献   

9.
Asymmetric localization of proteins plays a key role in many cellular processes, including cell polarity and cell fate determination. Using DNA microarray analysis, we identified a plasma membrane protein-encoding mRNA (IST2) that is transported to the bud tip by an actomyosin-based process. mRNA localization created a higher concentration of IST2 protein in the bud compared with that of the mother cell, and this asymmetry was maintained by a septin-mediated membrane diffusion barrier at the mother-bud neck. These results indicate that yeast creates distinct plasma membrane compartments, as has been described in neurons and epithelial cells.  相似文献   

10.
Wnt proteins, regulators of development in many organisms, bind to seven transmembrane-spanning (7TMS) receptors called frizzleds, thereby recruiting the cytoplasmic molecule dishevelled (Dvl) to the plasma membrane.Frizzled-mediated endocytosis of Wg (a Drosophila Wnt protein) and lysosomal degradation may regulate the formation of morphogen gradients. Endocytosis of Frizzled 4 (Fz4) in human embryonic kidney 293 cells was dependent on added Wnt5A protein and was accomplished by the multifunctional adaptor protein beta-arrestin 2 (betaarr2), which was recruited to Fz4 by binding to phosphorylated Dvl2. These findings provide a previously unrecognized mechanism for receptor recruitment of beta-arrestin and demonstrate that Dvl plays an important role in the endocytosis of frizzled, as well as in promoting signaling.  相似文献   

11.
The functional integrity of the intestinal epithelial barrier forms a major defense against invading pathogens, including gastrointestinal-dwelling nematodes, which are ubiquitous in their distribution worldwide. Here, we show that an increase in the rate of epithelial cell turnover in the large intestine acts like an "epithelial escalator" to expel Trichuris and that the rate of epithelial cell movement is under immune control by the cytokine interleukin-13 and the chemokine CXCL10. This host protective mechanism against intestinal pathogens has implications for our wider understanding of the multifunctional role played by intestinal epithelium in mucosal defense.  相似文献   

12.
Cell polarization can occur in the absence of any spatial cues. To investigate the mechanism of spontaneous cell polarization, we used an assay in yeast where expression of an activated form of Cdc42, a Rho-type guanosine triphosphatase (GTPase) required for cell polarization, could generate cell polarity without any recourse to a preestablished physical cue. The polar distribution of Cdc42 in this assay required targeted secretion directed by the actin cytoskeleton. A mathematical simulation showed that a stable polarity axis could be generated through a positive feedback loop in which a stochastic increase in the local concentration of activated Cdc42 on the plasma membrane enhanced the probability of actin polymerization and increased the probability of further Cdc42 accumulation to that site.  相似文献   

13.
Little is known about directed motility of bacteria that move by type IV pilus-mediated (twitching) motility. Here, we found that during periodic cell reversals of Myxoccocus xanthus, type IV pili were disassembled at one pole and reassembled at the other pole. Accompanying these reversals, FrzS, a protein required for directed motility, moved in an oscillatory pattern between the cell poles. The frequency of the oscillations was controlled by the Frz chemosensory system, which is essential for directed motility. Pole-to-pole migration of FrzS appeared to involve movement along a filament running the length of the cell. FrzS dynamics may thus regulate cell polarity during directed motility.  相似文献   

14.
Activation of apical chloride channels in the gastric oxyntic cell   总被引:1,自引:0,他引:1  
Oxyntic cells that retain distinct morphological polarity between apical and basolateral membranes were isolated from the gastric mucosa of the amphibian Necturus. Patch-clamp techniques were applied to these cells to identify apical membrane ion channels associated with hydrochloric acid secretion. A single class of voltage-dependent, inwardly rectifying chloride channels was observed in the apical membranes of both resting and stimulated (acid-secreting) oxyntic cells. Stimulation of the cells with dibutyryladenosine 3',5'-monophosphate and isobutylmethylxanthine increased channel open probability and simultaneously increased apical membrane surface area. This chloride channel is probably responsible for electrogenic chloride secretion by the gastric mucosa and may also participate in the fluid- and enzyme-secretory functions of the oxyntic cell, analogous to the chloride channels found in the apical membranes of other exocrine cells.  相似文献   

15.
Two species of primitive chordates have hyperpolarizing photoreceptor potentials, as vertebrates do. In Salpa the photoreceptive membrane is composed of microvilli, whereas in Amaroucium it is modified from cilia. There appears to be no functional correlation between fine structure of photoreceptive membrane and polarity of response to light.  相似文献   

16.
【目的】通过检测TET1和Wnt信号通路相关基因以及DKK家族基因在山羊胎儿发育早期的表达变化,分析TET1与Wnt通路基因的相关性,为TET1调控山羊胎儿发育研究提供理论依据。【方法】选取12只健康大足黑山羊母羊,自然发情后与同一只种公羊自然交配。采用剖腹产手术的方法,分别获得妊娠20、25、30、60和90d的胎儿,对胎儿的生长指标(体重、体长)进行统计,并采集了60和90d胎儿的组织器官样品(心、肝、肺、肾、脑、皮肤),通过Real-time PCR(RT-PCR)检测各样品中TET1基因,DKK家族基因(DKK1、DKK2、DKK3)和Wnt家族基因(Wnt2、Wnt2b、Wnt4、Wnt5a、Wnt5b、Wnt7b、Wnt16)的相对表达量。利用SPSS软件分析山羊胎儿发育早期不同阶段TET1与WNT信号通路相关基因相关性以及基因表达显著性(P0.05)。【结果】山羊妊娠早期胎儿生长在60d后有显著变化。荧光定量检测结果表明,TET1基因表达随妊娠天数的增加呈上升趋势。Wnt家族基因在山羊胎儿发育中都检测到表达(Wnt2,-2b,-4,-5a,-5b,-7b,-16)。其中,Wnt2和Wnt7b表达量随胎儿发育逐渐增高;Wnt2b、Wnt5a、Wnt5b、Wnt7b在妊娠30 d时有显著高表达(P0.05);Wnt4在胎儿发育20 d时表达显著(P0.05);Wnt16基因在妊娠25 d有显著高表达(P0.05)。DKK家族基因表达检测结果显示,DKK1在胎儿发育早期阶段都有表达,DKK2/3在妊娠初期表达量较低,后期表达增高。通过组织中基因表达检测显示,TET1在90d胎儿肝、肺、肾和脑中的表达水平相比于60d胎儿组织升高,肝中表达量显著(P0.05)。Wnt家族基因Wnt2在组织器官中有相对活跃的表达,妊娠90d胎儿肺中表达量极显著(P0.01);Wnt16基因在胎儿皮肤组织中表达显著(P0.05),且维持在一个较高的水平;Wnt5a和Wnt7b在肾中表达显著(P0.05),其他Wnt基因在组织中都有表达。相关性分析显示,胎儿生长指标(体重、体长)变化与TET1的表达呈极显著正相关(P0.01);TET1在胎儿发育早期的表达与Wnt2、Wnt7b、Wnt16呈现正相关,与Wnt2b、Wnt4、Wnt5a、Wnt5b呈负相关,其中与Wnt5b呈显著负相关(P0.05),与Wnt7b呈极显著正相关(P0.01)。Wnt通路基因之间也有相互关系,Wnt2与Wnt4呈极显著负相关(P0.01)。Wnt2与Wnt7b,Wnt2b与Wnt5a、Wnt5b,Wnt5a与Wnt5b呈极显著正相关(P0.01)。Wnt4与Wnt5a呈显著正相关(P0.05)。【结论】获得了TET1与Wnt基因在山羊胎儿发育早期的表达模式,并进行了相关性分析,填补了这些基因在山羊方面的研究空白;TET1与Wnt基因对山羊胎儿早期的发育和组织的形成是一个动态的调控变化过程;TET1基因表达与部分Wnt基因呈现显著正相关,部分呈现显著负相关;Wnt通路基因之间表达量呈现一定的相关性。这些数据为TET1与Wnt分子调控山羊早期胎儿发育的机制深入研究提供了参考。  相似文献   

17.
Polar flow of the phytohormone auxin requires plasma membrane-associated PIN proteins and underlies multiple developmental processes in plants. Here we address the importance of the polarity of subcellular PIN localization for the directionality of auxin transport in Arabidopsis thaliana. Expression of different PINs in the root epidermis revealed the importance of PIN polar positions for directional auxin flow and root gravitropic growth. Interfering with sequence-embedded polarity signals directly demonstrates that PIN polarity is a primary factor in determining the direction of auxin flow in meristematic tissues. This finding provides a crucial piece in the puzzle of how auxin flow can be redirected via rapid changes in PIN polarity.  相似文献   

18.
mDia1, a Rho effector, belongs to the Formin family of proteins, which shares the conserved tandem FH1-FH2 unit structure. Formins including mDia1 accelerate actin nucleation while interacting with actin filament fast-growing ends. Here our single-molecule imaging revealed fast directional movement of mDia1 FH1-FH2 for tens of microns in living cells. The movement of mDia1 FH1-FH2 was blocked by actin-perturbing drugs, and the speed of mDia1 FH1-FH2 movement appeared to correlate with actin elongation rates. In vitro, mDia1 FH1-FH2 associated persistently with the growing actin barbed end. mDia1 probably moves processively along the growing end of actin filaments in cells, and Formins may be a molecular motility machinery that is independent from motor proteins.  相似文献   

19.
Presence of sodium in the bathing medium is not essential for the electrically excitable depolarizing electrogenesis of crayfish muscle fibers, production of action potentials being dependent on calcium. The depolarizing electrogenesis of the excitatory synaptic membrane component does require sodium, however, and this ion cannot be replaced by lithium as it can in spike electrogenesis of many cells. Ionophoretic applications of glutamate, which in the presence of sodium depolarize the cell by activating the excitatory synaptic membrane, are without effect in the absence of sodium. Not only is there no depolarization, but the membrane conductance also remains unchanged. Thus, in the absence of inward movement of sodium across the synaptic membrane there is also no outward movement of potassium. Accordingly, it seems that increased conductance for potassium is not an independent process in the synaptic membrane, whereas it is independent of sodium activation in spike electrogenesis. Chloride activation is independent, however; increase in conductance and the electrogenesis of the inhibitory synaptic component are not affected by the absence of sodium. Implications of these findings regarding the structure of differently excitable membrane components are discussed.  相似文献   

20.
Augmented Wnt signaling in a mammalian model of accelerated aging   总被引:1,自引:0,他引:1  
The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and an increase in progenitor cell senescence. Because klotho is a secreted protein, we postulated that klotho might interact with other soluble mediators of stem cells. We found that klotho bound to various Wnt family members. In a cell culture model, the Wnt-klotho interaction resulted in the suppression of Wnt biological activity. Tissues and organs from klotho-deficient animals showed evidence of increased Wnt signaling, and ectopic expression of klotho antagonized the activity of endogenous and exogenous Wnt. Both in vitro and in vivo, continuous Wnt exposure triggered accelerated cellular senescence. Thus, klotho appears to be a secreted Wnt antagonist and Wnt proteins have an unexpected role in mammalian aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号