首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
【目的】揭示北方山区秸秆覆盖对旱作玉米田土壤呼吸的影响。【方法】以北方山区夏玉米田为研究对象,采用Li-8100土壤碳通量系统测定了无秸秆覆盖和秸秆覆盖2种条件下土壤呼吸速率的生长季变化特征,分析土壤呼吸速率与水热因子的关系。【结果】在玉米生长季内,土壤呼吸速率呈单峰型变化趋势;秸秆覆盖和无秸秆覆盖的土壤呼吸速率变化范围分别为0.88~2.80μmol/(m2·s)和0.71~1.78μmol/(m2·s),秸秆覆盖土壤呼吸速率显著高于无秸秆覆盖;土壤呼吸与10 cm深处的土壤温度呈显著的指数相关,秸秆覆盖和无秸秆覆盖的土壤温度可以分别解释土壤呼吸变化的82.5%和69.5%;基于土壤温度计算的敏感性指数Q10值为秸秆覆盖(2.94)无秸秆覆盖(2.18);土壤呼吸对土壤水分的响应符合一元二次函数模型,无秸秆覆盖和秸秆覆盖的土壤含水率可以解释土壤呼吸变化的88.8%和84.6%;水热双因子模型的拟合结果比单因子模型较差。【结论】秸秆覆盖显著增加了土壤CO2排放,土壤含水率能更好地解释土壤呼吸速率的变化,水热双因子的协同影响机制有待进一步研究。  相似文献   

2.
采用Li-6400-09便携式土壤呼吸室对澄江尖山河流域云南松土壤呼吸速率进行定位测定,并对土壤呼吸的影响因子进行分析。结果表明:土壤呼吸具有明显的季节变化特点,云南松次生林土壤呼吸波动范围为0.77~4.22μmol·m-2·s-1,湿季土壤呼吸速率显著高于干季(p0.05);土壤呼吸速率与土壤温度和土壤水分的相关性均达到显著水平,且与土壤水分相关性最紧密,它能够解释云南松林土壤呼吸的57.9%~69.4%;双因素模型较好地拟合了土壤温度和土壤含水量对土壤呼吸的交互作用,两者共同解释了土壤呼吸速率变化的74.5%~81.6%;相关分析表明,不同土壤化学指标对土壤呼吸速率的影响存在差异。土壤呼吸速率与土壤易氧化有机碳、全氮、水解氮及pH均呈显著的正相关关系,且与土壤全P含量呈极显著的正相关关系(p0.01),而与土壤C/N则呈极显著的负相关关系。因此,西南地区严重干旱的情况下,土壤含水量的减少成为云南松林土壤呼吸季节变化的主控因子,其次为土壤化学性质的影响。  相似文献   

3.
不同施氮水平下旱作玉米田土壤呼吸速率与土壤水热关系   总被引:6,自引:0,他引:6  
为探讨不同施氮量对旱作玉米田土壤呼吸速率的影响,设置0(CK)、80、160、240、320kg·hm-25个氮肥水平,分析不同施氮水平下土壤呼吸速率动态变化及其与土壤温度和土壤含水量间的关系。结果表明:夏玉米生长季土壤呼吸速率呈单峰变化曲线,于播种后52d左右达到最大值,成熟收获时降至最低;土壤呼吸总量(Sr)与施氮量(n)满足关系式Sr=1204.09(/1+e-1.69-0.02n)。土壤温度和土壤水分是影响土壤呼吸速率的主要因素,5cm土壤温度与土壤呼吸速率呈显著正相关,土壤呼吸速率随土壤温度升高呈指数增加,土壤温度可以解释旱作农田土壤呼吸速率季节变化的62.31%~78.66%;土壤水分和温度相互协调共同调控土壤呼吸,两者可以解释旱作玉米田土壤呼吸季节变化的79.63%~85.87%。  相似文献   

4.
目的研究大兴安岭地区兴安落叶松林土壤呼吸及其组分的特征以及与土壤温度、湿度两个影响因子之间的关系,为进一步阐明我国寒温带地区碳释放及其对地区气候的影响提供科学依据。方法使用LI-6400对大兴安岭北部5种主要类型兴安落叶松林(落叶松纯林、兴安杜鹃-落叶松林、杜香-落叶松林、白桦-落叶松林和樟子松-落叶松林)的土壤呼吸、呼吸组分及其影响因子进行测定分析。结果5种类型兴安落叶松林土壤总呼吸(RS)、异养呼吸(Rh)和根呼吸(Rr)都具有明显的单峰曲线季节动态,且峰值均出现在8月;平均RS波动在4.71~7.41 μmol/(m2·s)之间,大小依次为樟子松-落叶松林>杜香-落叶松林>白桦-落叶松林>落叶松纯林>兴安杜鹃-落叶松林,且不同类型兴安落叶松林土壤呼吸存在显著差异(P<0.05);不同类型兴安落叶松林Rh和Rr也存在显著差异(P<0.05),平均Rh表现为樟子松-落叶松林(5.56 μmol/(m2·s))>落叶松纯林(4.64 μmol/(m2·s))>白桦-落叶松林(4.55 μmol/(m2·s))>杜香-落叶松林(4.27 μmol/(m2·s))>兴安杜鹃-落叶松林(3.80 μmol/(m2·s));平均Rr表现为杜香-落叶松林(3.15 μmol/(m2·s))>樟子松-落叶松林(2.98 μmol/(m2·s))>白桦-落叶松林(2.76 μmol/(m2·s))>兴安杜鹃-落叶松林(2.30 μmol/(m2·s))>落叶松纯林(1.97 μmol/(m2·s))。异氧呼吸对土壤呼吸的贡献最大,占61.84%~71.76%,在异养呼吸中,以矿质土壤呼吸(Rm)为主,占土壤总呼吸的46.28%~58.18%,凋落物呼吸(Rl)的贡献只有8.34%~15.57%;Rr的土壤呼吸的贡献率为28.24%~38.16%。RS与土壤10 cm温度(T10)呈显著正相关指数关系,T10可以解释土壤季节性变化的43.6%~57.0%;但RS与土壤10 cm湿度(W10)的相关性因林型而异。结论不同类型兴安落叶松林土壤呼吸及其组分之间差异显著;温度是土壤呼吸的主要影响因子,而湿度对土壤呼吸的影响较小。   相似文献   

5.
土壤呼吸是陆地生态系统的碳循环中土壤碳的主要输出途径,利用便携式土壤呼吸测定仪LCpro+对晋西黄土区6种典型植被类型进行土壤呼吸速率的测定,另外同时测量相关的温度、湿度等环境因子,进而对土壤呼吸的日变化特征及与土壤温度和土壤湿度进行简单相关性分析和回归分析。结果表明:试验区内不同植被类型土壤呼吸速率日变化呈单峰型,中午12:00~13:00最大,凌晨5:00~6:00最小,均值由大到小依次为耕地(5.846)、次生林(4.305)、油松林(3.858)、刺槐林(3.456)、灌草地(2.220)、荒草地(1.355),退耕还林有利于减少土壤CO2输出;土壤呼吸与土壤温度的回归分析符合指数正相关关系,Q10值由大到小依次为灌草地(2.03)、耕地(1.88)、荒草地(1.86)、次生林(1.82)、油松林(1.75)、刺槐林(1.73),土壤呼吸与土壤湿度关系为对数模型的负相关模型,由多元回归分析得出土壤呼吸最主要的决定力是土壤温度。  相似文献   

6.
凋落物和植物根系作为土壤碳储量的主要植物性碳源,其质及量的改变可影响土壤碳汇功能。以黄土丘陵区柠条人工林为对象,设置移除凋落物、双倍凋落物、切根、移凋切根和保持原状5种碳输入方式,利用LI-8100土壤碳通量测量仪测定生长季(5-10月)土壤呼吸速率,以期阐明柠条人工林土壤呼吸速率对碳输入方式改变的响应。结果表明:1)各碳输入方式5-10月土壤呼吸速率呈单峰趋势,均在7月最高,10月最低;相比保持原状,双倍凋落物下5-10月累计土壤呼吸速率增加了22.73%,而移凋、切根和移凋切根的5-10月累计土壤呼吸速率分别减少27.57%、40.90%和33.83%;2)根系呼吸、凋落物呼吸和土壤矿质呼吸对土壤呼吸的相对贡献率由大到小分别为土壤矿质呼吸(68.58%)>根系呼吸(38.41%)>凋落物呼吸(24.65%);3)各碳输入方式下土壤呼吸速率与土壤温度呈显著指数相关,而与土壤湿度的二次关系不显著;土壤温度和湿度的双变量复合模型对土壤呼吸速率月变化解释率53%~93%,高于土壤温度和湿度的单因子模型对土壤呼吸速率月变化解释率53%~74%和0.6%~23.2%;相比保持原状,去凋、双倍凋落物、切根和移凋切根均降低了土壤温度敏感性。研究表明,柠条人工林地表凋落物的积累过多可能减弱土壤碳汇功能。  相似文献   

7.
利用LI-8100开路式土壤碳通量测量系统,在植物生长季期间,对暖温带3种林分-辽东栎林、油松林、辽东栎与华北落叶松混交林的土壤呼吸速率(Rs)、地下10 cm土壤温度、近地面气温和表层土壤水分的季节变化在野外进行连续定位观测,在此基础上对土壤呼吸与土壤10 cm温度、近地面气温和土壤水分等微生境因子之间的相关性进行了分析.结果表明:(1)辽东栎林、油松林和混交林土壤呼吸速率、土壤温度和近地面气温都有明显的单峰曲线季节变化.3种林分生长季期间平均土壤呼吸速率CO2的大小的顺序依次为辽东栎林(2.411 μmol/(m2·s)>混交林(1.655μmol/(m2·s)>油松林(1.289 μmol/(m2·s),辽东栎林与油松林和混交林林分土壤呼吸速率差异显著(P<0.05),但混交林和油松林间差异不显著(P>O.05);(2)辽东栎林、油松林和混交林的土壤呼吸速率与10 cm土温和近地面气温都具有指数相关关系,与10 cm土壤温度的相关性要高于与近地面空气温度的相关性;(3)辽东栎林、油松林和混交林土壤呼吸速率与土壤水分的相关性均不显著(R2分别为0.187、0.296和O.154.P>O.05);(4)不同林分间土壤有机碳、全氮含量均达到显著差异.综合分析,该地区森林土壤呼吸速率季节变化的主要影响因子为土壤10 cm温度和近地面气温,而林分间土壤呼吸速率的差异则可能是由树种组成、土壤因子和微生境差异的综合影响形成的.  相似文献   

8.
3种城郊防护林土壤呼吸与温湿度的关系   总被引:1,自引:0,他引:1  
以天津市3种代表性的城郊防护林(杨树、火炬树、刺槐)为研究对象,利用便携式土壤碳通量全自动分析仪ACE进行定期观测,研究结果表明:(1)在2018年4—10月生长季3种城郊防护林土壤呼吸速率的日变化表现为单峰曲线,最大值出现在10:00—15:00,最小值出现在20:00—5:00。(2)土壤呼吸速率的季节变化为明显的单峰曲线,杨树土壤呼吸速率在7月达到峰值,为3.80μmol/(m~2·s);而火炬树和刺槐土壤呼吸速率在8月达到峰值,分别为3.84、4.75μmol/(m~2·s);杨树、火炬树和刺槐的土壤呼吸速率平均值分别为2.01、2.25、2.62μmol/(m~2·s),差异达显著水平(P0.05)。(3)土壤呼吸速率与土壤温度之间具有显著的二次函数关系(P0.05),拟合度为78.8%~84.7%;与土壤湿度之间呈显著或极显著线性正相关,拟合度为66.8%~90.2%。(4)对土壤呼吸速率和10 cm深度的土壤温度(T_(10))及5 cm深度的土壤湿度(M_5)之间进行多元线性拟合,相关系数为0.826~0.950,说明多元线性模型能够很好地解释土壤温度和湿度对土壤呼吸的协同作用,表明土壤温度和湿度是3种城郊防护林土壤呼吸速率的主要影响因子。  相似文献   

9.
为揭示土地利用变化过程中农业活动对土壤呼吸的影响,研究三江平原旱改水田(DL-PL)、湿改水田(WL-PL)、湿改旱地(WL-DL)和林改旱地(FL-DL)等4种土地利用方式的土壤呼吸温度敏感性及其土壤呼吸速率与温度、水分、碳含量的关系,并在此基础上估算累积土壤呼吸量。结果表明,4种土地利用方式的土壤呼吸速率随着土壤深度增加而呈降低的趋势,平均土壤呼吸速率由高到低表现为DL-PLWL-PLWL-DLFL-DL。研究期土壤深度为0~60 cm时,4种土地利用方式的累积土壤呼吸量由大到小依次为DL-PLWL-PLFL-DLWL-DL,总体上水田的土壤呼吸量比旱地高。在不同土壤深度,土壤呼吸速率与土壤温度、土壤含水量之间均存在极显著(P0.01)正相关关系,土壤温度和含水量对土壤呼吸的解释能力分别在71%、69%以上。同时,土壤呼吸速率与土壤碳含量呈正相关关系,但土壤碳含量对土壤呼吸作用的解释能力较低(P0.05)。本研究将为评估农业区域碳收支平衡以及制定科学有效的土壤管理措施提供依据,同时补充完善土壤碳排放机制理论。  相似文献   

10.
以天津市2种城市绿地国槐梨树林(GL)和国槐银杏林(GY)的土壤为研究对象,通过测定绿地生长季土壤呼吸速率,分析了土壤呼吸和土壤温度、土壤湿度之间的关系。结果表明:(1)城市绿地土壤呼吸速率的日变化多呈现单峰型,峰值于14:00—18:00出现,而在8月和10月日动态呈现非单峰型;(2)土壤呼吸速率季节动态呈现出单峰趋势,GY和GL分别在7月和8月达到土壤呼吸速率最大值,分别为2.26±0.19、2.46±0.27μmol/(m~2·s),2种城市绿地土壤呼吸均值均为2.51μmol/(m~2·s),但变幅不同;(3)城市绿地土壤呼吸速率与深度10 cm处土壤温度(T_(10))间的关系以二次模型拟合最好,而与深度5 cm处土壤湿度(M_5)间的关系以指数模型拟合最好;(4)对土壤呼吸速率和T_(10)、M_5之间的关系进行多元线性拟合,相关系数达0.70以上,表明多元线性模型能更好地解释T_(10)和M_5对土壤呼吸的协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号