首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The in vivo metabolism and pharmacokinetics of flunixin meglumine and phenylbutazone have been extensively characterized; however, there are no published reports describing the in vitro metabolism, specifically the enzymes responsible for the biotransformation of these compounds in horses. Due to their widespread use and, therefore, increased potential for drug–drug interactions and widespread differences in drug disposition, this study aims to build on the limited current knowledge regarding P450‐mediated metabolism in horses. Drugs were incubated with equine liver microsomes and a panel of recombinant equine P450s. Incubation of phenylbutazone in microsomes generated oxyphenbutazone and gamma‐hydroxy phenylbutazone. Microsomal incubations with flunixin meglumine generated 5‐OH flunixin, with a kinetic profile suggestive of substrate inhibition. In recombinant P450 assays, equine CYP3A97 was the only enzyme capable of generating oxyphenbutazone while several members of the equine CYP3A family and CYP1A1 were capable of catalyzing the biotransformation of flunixin to 5‐OH flunixin. Flunixin meglumine metabolism by CYP1A1 and CYP3A93 showed a profile characteristic of biphasic kinetics, suggesting two substrate binding sites. The current study identifies specific enzymes responsible for the metabolism of two NSAIDs in horses and provides the basis for future study of drug–drug interactions and identification of reasons for varying pharmacokinetics between horses.  相似文献   

3.
Newer cyclo-oxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drugs (NSAIDs), such as firocoxib, are proposed to reduce inhibition of cyclo-oxygenase-1 (COX-1) and avoid undesirable side effects, while continuing to inhibit inflammation associated with COX-2. However, COX selectivity is typically based on in vitro testing, which may not provide sufficient information critical for treatment selection. This study investigated the pharmacokinetics and ex vivo COX-1 and COX-2 inhibition of phenylbutazone, flunixin meglumine, meloxicam and firocoxib. Horses (n = 3) were administered one of the four drugs, in a randomised cross-over design, with 3-week washout periods. For each drug, three doses were given and sampling performed. Drug plasma concentrations, thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were determined. After one dose, TXB2 and PGE2 levels were significantly higher in horses administered firocoxib compared to flunixin meglumine. Following the third dose, TXB2 levels in horses administered firocoxib and meloxicam were significantly higher compared to flunixin meglumine or phenylbutazone; all drugs reduced PGE2 to a similar degree. The mean plasma half-lives were 5.97 ± 0.47, 4.74 ± 0.14, 8.24 ± 3.74 and 47.42 ± 7.41 h for phenylbutazone, flunixin meglumine, meloxicam and firocoxib, respectively. Firocoxib and meloxicam exhibited significantly less COX-1 inhibition compared to flunixin meglumine and phenylbutazone; all drugs inhibited COX-2. The plasma half-life of firocoxib was longer than the other NSAIDs, including meloxicam. Data from this study have important clinical relevance and should be used to inform practitioners’ drug selection of a COX-1 sparing or traditional NSAID and dose selection and to provide knowledge of the duration for the four NSAIDs studied.  相似文献   

4.
OBJECTIVE: To use force plate analysis to evaluate the analgesic efficacies of flunixin meglumine and phenylbutazone administered i.v. at typical clinical doses in horses with navicular syndrome. ANIMALS: 12 horses with navicular syndrome that were otherwise clinically normal. PROCEDURE: Horses received flunixin (1.1 mg/kg), phenylbutazone (4.4 mg/kg), or physiologic saline (0.9% NaCI; 1 mL/45 kg) solution administered IV once daily for 4 days with a 14-day washout period between treatments (3 treatments/horse). Before beginning treatment (baseline) and 6, 12, 24, and 30 hours after the fourth dose of each treatment, horses were evaluated by use of the American Association of Equine Practitioners lameness scoring system (half scores permitted) and peak vertical force of the forelimbs was measured via a force plate. RESULTS: At 6, 12, and 24 hours after the fourth treatment, subjective lameness evaluations and force plate data indicated significant improvement in lameness from baseline values in horses treated with flunixin or phenylbutazone, compared with control horses; at those time points, the assessed variables in flunixin- or phenylbutazone-treated horses were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: In horses with navicular syndrome treated once daily for 4 days, typical clinical doses of flunixin and phenylbutazone resulted in similar significant improvement in lameness at 6, 12, and 24 hours after the final dose, compared with findings in horses treated with saline solution. The effect of flunixin or phenylbutazone was maintained for at least 24 hours. Flunixin meglumine and phenylbutazone appear to have similar analgesic effects in horses with navicular syndrome.  相似文献   

5.
Analgesia.     
Critical to reducing patient morbidity as well as heightened ethical awareness, alleviation of pain in animals has become integral to medical case management and surgical procedures. Pharmacotherapy is directed at peripheral nociceptors, primary and secondary spinal neurons, and pain-processing areas in the CNS. Accordingly, three primary pharmacologic strategies have evolved: drugs that bind to and activate opioid receptors, drugs that bind to and activate alpha 2 receptors, and drugs that reduce de novo prostaglandin synthesis. In horses, the two predominant types of pain encountered are musculoskeletal and visceral pain. Several factors must be considered when devising a therapeutic strategy, including the etiology of the painful event, desired duration of therapy (acute vs chronic), desire for sedation, and potential side effects and toxicity. Opioids and alpha 2 agonists are particularly effective for visceral pain associated with colic. Butorphanol remains the only commercially available opioid and provides superior visceral analgesia compared with pentazocine or flunixin meglumine but not compared with the alpha 2 agonists. The behavioral changes such the sedative effects of alpha 2 agonists and the increased locomotion and CNS excitability seen with some opioids are important considerations when these agents are used as analgesics. NSAIDs may be considered for visceral pain therapy also, especially pain associated with an inflammatory component or endotoxemia. In particular, flunixin meglumine and ketoprofen provide prolonged analgesia and suppress the effects of endotoxin. Long-term therapy of musculoskeletal diseases usually necessitates chronic NSAID use. Although many NSAIDs are now available in approved equine formulations, there remain some important differences among NSAIDs for the practitioner to consider when choosing an analgesic. NSAIDs differ in their ability to ameliorate pyrexia, affect platelet function, alleviate pain, and reduce inflammation. For ease of administration, those available for oral use include phenylbutazone, meclofenamic acid, flunixin meglumine, and naproxen. All are potentially ulcerogenic, and poor tolerance to one may necessitate switching to another with a better toleration profile or to drug from a different analgesic class.  相似文献   

6.
Pancytopenia caused by bone marrow aplasia in a horse   总被引:1,自引:0,他引:1  
Pancytopenia was evaluated in a mature Quarter Horse gelding. A diagnosis of bone marrow aplasia was made on the basis of bone marrow hypocellularity. History of drugs administered included penicillin, oxytetracycline, trimethoprim-sulfadiazine, phenylbutazone, dipyrone, flunixin meglumine, and isoxsuprine. Clinical remission was observed after treatment with glucocorticoids, androgens, and broad-spectrum antimicrobials.  相似文献   

7.
We attempted to determine the extent to which nonsteroidal anti-inflammatory drugs (NSAID) are used in the treatment of food animals, and whether withdrawal times for milk and slaughter are recommended to clients. A survey questionnaire was mailed to a stratified random sample of 2,000 veterinarians whose practices were at least half food animals. A cross-sectional study was used to examine the responses to determine whether differences existed on the basis of a respondent's geographic location, number of years since graduation from veterinary college, and percentage of practice devoted to beef and dairy cattle. The response rate was 71% (1,424/2,000). Of those practitioners responding, 93% (1,325/1,424) reported using NSAID, with approximately 57 (751/1,322), 24 (327/1,322), and 18% (244/1,322) of respondents reporting use more than once a week, once a week, and 1 to 2 times per month, respectively. Dairy practitioners reported more frequent use than did beef practitioners. Use of flunixin meglumine was reported more frequently than the use of aspirin, phenylbutazone, or dipyrone. Approximately 88% (1,146/1,306) of respondents that used NSAID did so in combination with antibiotics. Withdrawal times for milk and meat were made on the basis of guidelines for the antibiotic. When using NSAID alone, recommendations for withdrawal times for milk and meat varied extensively. Overall, practitioners indicated that NSAID were useful and necessary for the treatment of food-producing animals.  相似文献   

8.
A series of in-vitro experiments was performed utilizing the ability of bovine peripheral-blood mononuclear cells (PBMC) to induce lysis of Madin-Darby bovine kidney (MDBK) cells infected with bovine herpesvirus 1 (BHV1), in an antibody-independent natural-killer(NK)-cell cytotoxic assay. The effects of dexamethasone (dexamethasone sodium phosphate), betamethasone (betamethasone sodium phosphate), flunixin (flunixin meglumine) and phenylbutazone on this NK cytolysis were studied using concentrations of the drugs ranging from well below to well above those normally attained in plasma at recommended therapeutic doses. All four drugs inhibited NK activity. For each agent a minimum inhibitory concentration (MIC50) required to inhibit NK activity by approximately 50% was calculated. For dexamethasone, betamethasone and flunixin the MIC50 was lower after a 24-h pre-incubation of PBMC with each drug, although a marked inhibition was seen when the drug was only present during the 5-h NK assay itself. In contrast the MIC50 for phenylbutazone rose after a 24-h pre-incubation with PBMC.  相似文献   

9.
OBJECTIVE: To determine the effectiveness of administering multiple doses of phenylbutazone alone or a combination of phenylbutazone and flunixin meglumine to alleviate lameness in horses. ANIMALS: 29 adult horses with naturally occurring forelimb and hind limb lameness. PROCEDURES: Lameness evaluations were performed by use of kinematic evaluation while horses were trotting on a treadmill. Lameness evaluations were performed before and 12 hours after administration of 2 nonsteroidal anti-inflammatory drug (NSAID) treatment regimens. Phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days, or phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days in combination with flunixin meglumine administered at 1.1 mg/kg, IV, every 12 hours for 5 days. RESULTS: Alleviation of lameness was greater after administration of the combination of NSAIDs than after oral administration of phenylbutazone alone. Improvement in horses after a combination of NSAIDs did not completely mask lameness. Five horses did not improve after either NSAID treatment regimen. All posttreatment plasma concentrations of NSAIDs were less than those currently allowed by the United States Equestrian Federation Inc for a single NSAID. One horse administered the combination NSAID regimen died of acute necrotizing colitis during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of a combination of NSAIDs at the dosages and intervals used in the study reported here alleviated the lameness condition more effectively than did oral administration of phenylbutazone alone. This may attract use of combinations of NSAIDs to increase performance despite potential toxic adverse effects.  相似文献   

10.
OBJECTIVES: To determine the in vitro effect of prostaglandin E2 (PGE2), PGF2alpha, PGI2; and nonsteroidal anti-inflammatory drugs (NSAID; ie, flunixin meglumine, ketoprofen, carprofen, and phenylbutazone) on contractile activity of the equine dorsal colon, ventral colon, and pelvic flexure circular and longitudinal smooth muscle. ANIMALS: 26 healthy horses. PROCEDURE: Tissue collected from the ventral colon, dorsal colon, and pelvic flexure was cut into strips and mounted in a tissue bath system where contractile strength was determined. Incremental doses of PGE2, PGF2alpha,, PGI2, flunixin meglumine, carprofen, ketoprofen, and phenylbutazone were added to the baths, and the contractile activity was recorded for each location and orientation of smooth muscle. RESULTS: In substance P-stimulated tissues, PGE2 and PGF2alpha enhanced contractility in the longitudinal smooth muscle with a decrease or no effect on circular smooth muscle activity. Prostaglandin I2 inhibited the circular smooth muscle response with no effect on the longitudinal muscle. The activity of NSAID was predominantly inhibitory regardless of location or muscle orientation. CONCLUSIONS AND CLINICAL RELEVANCE: In the equine large intestine, exogenous prostaglandins had a variable effect on contractile activity, depending on the location in the colon and orientation of the smooth muscle. The administration of NSAID inhibited contractility, with flunixin meglumine generally inducing the most profound inhibition relative to the other NSAID evaluated in substance P-stimulated smooth muscle of the large intestine. The results of this study indicate that prolonged use of NSAID may potentially predispose horses to develop gastrointestinal tract stasis and subsequent impaction.  相似文献   

11.
OBJECTIVE: To assess effects of treatment with phenylbutazone (PBZ) or a combination of PBZ and flunixin meglumine in horses. ANIMALS: 24 adult horses. PROCEDURE: 13 horses received nonsteroidal antiinflammatory drugs (NSAIDs) in a crossover design. Eleven control horses were exposed to similar environmental conditions. Treated horses received PBZ (2.2 mg/kg, PO, q 12 h, for 5 days) and a combination of PBZ and flunixin meglumine (PBZ, 2.2 mg/kg, PO, q 12 h, for 5 days; flunixin meglumine, 1.1 mg/kg, IV, q 12 h, for 5 days). Serum samples were obtained on day 0 (first day of treatment) and day 5, and total protein, albumin, and globulin were measured. RESULTS: 1 horse was euthanatized with severe hypoproteinemia, hypoalbuminemia, and colitis during the combination treatment. Comparisons revealed no significant difference between control horses and horses treated with PBZ alone. There was a significant difference between control and treated horses when administered a combination of PBZ and flunixin meglumine. Correction for horses with values >2 SDs from the mean revealed a significant difference between control horses and horses administered the combination treatment, between control horses and horses administered PBZ alone, and between horses receiving the combination treatment and PBZ alone. Gastroscopy of 4 horses revealed substantial gastric ulcers when receiving the combination NSAID treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of results of the study indicates the need for caution when administering a combination NSAID treatment to horses because the detrimental effects may outweigh any potential benefits.  相似文献   

12.
Background: Nonsteroidal anti‐inflammatory drugs (NSAIDs) are commonly used systemically for the treatment of inflammatory ocular disease in horses. However, little information exists regarding the ocular penetration of this class of drugs in the horse. Objective: To determine the distribution of orally administered flunixin meglumine and firocoxib into the aqueous humor of horses. Animals: Fifteen healthy adult horses with no evidence of ophthalmic disease. Methods: Horses were randomly assigned to a control group and 2 treatment groups of equal sizes (n = 5). Horses assigned to the treatment groups received an NSAID (flunixin meglumine, 1.1 mg/kg PO q24h or firocoxib, 0.1 mg/kg PO q24h for 7 days). Horses in the control group received no medications. Concentrations of flunixin meglumine and firocoxib in serum and aqueous humor and prostaglandin (PG) E2 in aqueous humor were determined on days 1, 3, and 5 and aqueous : serum ratios were calculated. Results: Firocoxib penetrated the aqueous humor to a significantly greater extent than did flunixin meglumine at days 3 and 5. Aqueous : serum ratios were 3.59 ± 3.32 and 11.99 ± 4.62% for flunixin meglumine and firocoxib, respectively. Ocular PGE2 concentrations showed no differences at any time point among study groups. Conclusions and Clinical Importance: Both flunixin meglumine and firocoxib penetrated into the aqueous humor of horses. This study suggests that orally administered firocoxib penetrates the aqueous humor better than orally administered flunixin meglumine at label dosages in the absence of ocular inflammation. Firocoxib should be considered for the treatment of inflammatory ophthalmic lesions in horses at risk for the development of adverse effects associated with nonselective NSAID administration.  相似文献   

13.
The clinical efficacy of two non-steroidal anti-inflammatory drugs (NSAIDs), meloxicam (Metacam 20 mg/ml) and flunixin meglumine (Finadyne), as adjuncts to antibacterial therapy in the treatment of acute febrile respiratory disease in cattle was compared. The randomised blind, positive controlled study was conducted under feedlot conditions in Mexico. Overall, 201 female cattle (weighing 220-250 kg) diagnosed with bronchopneumonia at the feedlot were recruited into the study. On Day 0 all animals were treated with 20 mg oxytetracycline/kg body-weight (Bivatop 200) by subcutaneous injection, in conjunction with either meloxicam (0.5 mg/kg subcutaneously, Metacam 20 mg/ml, n = 100), or flunixin meglumine (2.2 mg/kg intravenously, Finadyne, n = 101). According to label instructions, meloxicam was administered as a single dose, whereas flunixin meglumine could be administered daily for up to 3 consecutive days depending on the rectal temperature (with re-administration, if rectal temperature > or = 40.0 degrees C). Rectal temperature, respiratory rate, appetite, dyspnoea, coughing, nasal discharge and general condition were recorded on Days 0 (prior to treatment), 1, 2, 3 and 7 using a weighted numerical score. Scores were summed to generate a 'Clinical Sum Score' (CSS, range 7 to 24 points). Individual animal body weights were measured on Days 0 and 7. Nasal swabs were collected from 10 animals per treatment group on Day 0 for microbiological culture. Clinical parameters and the mean CSS showed no significant differences between treatment groups with mean CSS on Days 0 and 7 of 16.18 and 10.55 in the meloxicam group and 16.41 and 10.88 in the flunixin meglumine group. However, a significantly lower mean rectal temperature was measured in the meloxicam group on Day 2 (p < or = 0.01). No significant differences in mean body weights were found between groups. Repeated administration of flunixin meglumine was performed in 45% of the animals. No suspected adverse drug events related to treatments were reported. It is concluded that a single subcutaneous dose of meloxicam was as clinically effective as up to 3 consecutive daily intravenous doses of flunixin meglumine when used as an adjunctive therapy to antibacterial therapy in the treatment of acute febrile respiratory disease in feedlot cattle.  相似文献   

14.
The study was performed on 18 Black-and-White Lowland Breed calves with clinical signs of enzootic bronchopneumonia divided into three groups and respectively treated with oxytetracycline and meloxicam--Group I (9 animals); oxytetracycline and flunixin meglumine--Group II (3 animals); and oxytetracycline only--Group III (6 animals--control). The following observations were recorded before treatment (1st day) and two days later (3rd day): body temperature, the serum level of interferon (IFN) and tumor necrosis factor (TNF) as well as cytokine production by bronchoalveolar lavage (BAL) cells. The treatment of calves with a combination of oxytetracycline and meloxicam (Group I) and especially with oxytetracycline and flunixin meglumine (Group II) caused a significantly faster, in comparison to the control group, normalization of body temperature. Both drugs, meloxicam and especially flunixin meglumine, inhibited excessive TNF production in the organism (measured as the serum level of cytokine). Moreover, BAL cells isolated from calves treated with both NSAIDs were still able, ex vivo, to release TNF, in contrast to the control group (treated only with tetracycline) which lost the ability to produce TNF. The treatment of the calves with meloxicam and flunixin meglumine did not significantly influence the levels of IFN in sera but normalized ex vivo IFN production in BAL cells. These results suggest that the combination of meloxicam with an antibiotic or flunixin meglumine with an antibiotic which does not exert an immunosuppressive influence on the organism of calves suffering from enzootic bronchopneumonia is equally effective in the treatment of calves and superior to the antibiotic alone.  相似文献   

15.

Purpose  

The purpose of this study was to evaluate the brain, renal, and hepatic effects of three NSAIDs (flunixin meglumine, ketoprofen, and phenylbutazone) when administered IV to clinically normal Iranian fat-tailed sheep.  相似文献   

16.
REASONS FOR PERFORMING STUDY: Absorption of endotoxin across ischaemic-injured mucosa is a major cause of mortality after colic surgery. Recent studies have shown that flunixin meglumine retards mucosal repair. Systemic lidocaine has been used to treat post operative ileus, but it also has novel anti-inflammatory effects that could improve mucosal recovery after ischaemic injury. HYPOTHESIS: Systemic lidocaine ameliorates the deleterious negative effects of flunixin meglumine on recovery of mucosal barrier function. METHODS: Horses were treated i.v. immediately before anaesthesia with either 0.9% saline 1 ml/50 kg bwt, flunixin meglumine 1 mg/kg bwt every 12 h or lidocaine 1.3 mg/kg bwt loading dose followed by 0.05 mg/kg bwt/min constant rate infusion, or both flunixin meglumine and lidocaine, with 6 horses allocated randomly to each group. Two sections of jejunum were subjected to 2 h of ischaemia by temporary occlusion of the local blood supply, via a midline celiotomy. Horses were monitored with a behavioural pain score and were subjected to euthanasia 18 h after reversal of ischaemia. Ischaemic-injured and control jejunum was mounted in Ussing chambers for measurement of transepithelial electrical resistance (TER) and permeability to lipopolysaccharide (LPS). RESULTS: In ischaemic-injured jejunum TER was significantly higher in horses treated with saline, lidocaine or lidocaine and flunixin meglumine combined, compared to horses treated with flunixin meglumine. In ischaemic-injured jejunum LPS permeability was significantly increased in horses treated with flunixin meglumine alone. Behavioural pain scores did not increase significantly after surgery in horses treated with flunixin meglumine. CONCLUSIONS: Treatment with systemic lidocaine ameliorated the inhibitory effects of flunixin meglumine on recovery of the mucosal barrier from ischaemic injury, when the 2 treatments were combined. The mechanism of lidocaine in improving mucosal repair has not yet been elucidated.  相似文献   

17.
Two cyclooxygenase inhibitors (flunixin meglumine and phenylbutazone) and a selective thromboxane synthetase inhibitor were assessed in the management of experimental equine endotoxemia. Drugs or saline solution were administered to 16 horses 15 minutes before administration of a sublethal dose of endotoxin (Escherichia coli 055:B5). Plasma concentrations of thromboxane B2 (TxB2), prostacyclin (6-keto PGF1 alpha), plasma lactate, and hematologic values and clinical appearance were monitored for 3 hours after endotoxin administration. Pretreatment with flunixin meglumine (1 mg/kg of body weight) prevented most of the endotoxin-induced changes and correlated with a significant decrease in plasma TxB2 and 6-keto PGF1 alpha concentrations, compared with concentrations in nontreated horses (ie, pretreated with saline solution). Pretreatment with phenylbutazone (2 mg/kg) attenuated the effects of endotoxin and was associated with a brief, early, significant increase in plasma TxB2 concentrations, but not in plasma 6-keto PGF1 alpha concentrations. Pretreatment with the thromboxane synthetase inhibitor did not appear to clinically benefit the horses involved; however, arachidonic acid metabolism was redirected to prostacyclin production.  相似文献   

18.
The direct effects of four non-steroidal anti-inflammatory drugs (NSAIDs) on equine polymorphonuclear (PMN) and mononuclear (MN) leucocyte movement were investigated using two in vitro assay systems. The Boyden chamber microfilter technique measures both chemokinetic and chemotactic locomotion, and the agarose microdroplet assay measures solely chemokinesis. Zymosan-activated plasma (ZAP) and the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) were used as standard chemoattractants for PMN and MN leucocytes, respectively. The actions of six concentrations of each NSAID, indomethacin (50 microM-10 mM), phenylbutazone (10 microM-1 mM), oxyphenbutazone (2.5 microM-500 microM) and flunixin (0.1 microM-50 microM), in suppressing cell movement induced by ZAP and FMLP were investigated. All four drugs exerted inhibitory effects on induced movement of both cell types in the Boyden chamber assay, usually in a concentration-dependent manner, although oxyphenbutazone action on PMN cells occurred only at the highest concentration tested. Significant inhibition of PMN and MN cell locomotion was produced by indomethacin, flunixin and oxyphenbutazone, and inhibition of PMN movement by phenylbutazone occurred in the agarose microdroplet assay. Flunixin was the most potent of the four drugs investigated in both assay systems. The findings may be of importance to the use of phenylbutazone and flunixin as NSAIDs in equine medicine, since the concentrations used were similar to concentrations of both drugs and the phenylbutazone metabolite oxyphenbutazone previously reported to occur in equine plasma and inflammatory exudate.  相似文献   

19.
Uremia unexpectedly developed in five dogs 24 hours after undergoing thoracotomy in a student laboratory. In all dogs general anesthesia had been maintained with methoxyflurane, muscle relaxation had been induced with gallamine, and each dog received a single intravenous dose of 1.0 mg/kg flunixin meglumine for analgesia upon termination of anesthesia. In a subsequent group of dogs undergoing an orthopedic procedure, we assessed the effects on renal function of methoxyflurane anesthesia plus oxymorphone, or of methoxyflurane or halothane anesthesia in combination with a single IM 1.0 mg/kg dose of flunixin meglumine. Significant elevations in serum urea and creatinine values, and necrosis of collecting ducts and loops of Henle, were noted only in the dogs receiving methoxyflurane and flunixin meglumine.

We conclude that the use of combination of methoxyflurane and flunixin meglumine is contraindicated in dogs.

  相似文献   

20.
Nonsteroidal anti-inflammatory drugs are commonly used in the treatment of inflammatory conditions, and have potential value in the treatment of thrombotic disease in the horse. This study compares the potency of three nonsteroidal anti-inflammatory drugs phenylbutazone, naproxen (equiproxen) and flunixin meglumine (banamine) with respect to their effects on equine platelets. Two functional responses of horse platelets were evaluated in vitro: their ability to aggregate and their ability to make available platelet factor 3 procoagulant activity.

Flunixin at a concentration of 10-6 M significantly depressed the maximum degree of adenosine diphosphate-induced (10-6M) aggregation while much higher concentrations of phenylbutazone and naproxen (5 X 105M) were required to produce similar effects. None of the non-steriodal anti-inflammatory drugs significantly affected the duration of the lag phase or the initial velocity of adenosine diphosphate-induced aggregation within the range of drug concentrations used (10-6-10-3M). The lag phase and initial velocity of acid-soluble collagen-induced aggregation were significantly affected by 10-6 M flunixin and 10-4 M phenylbutazone or naproxen was required to produce equivalent effects. Concentrations of 5 X 10-6 M flunixin and 5 X 10-4 M phenylbutazone or naproxen were required to significantly depress the degree of collaen-induced aggregation of horse platelets.

Although the effects of the nonsteroidal anti-inflammatory drugs were qualitatively similar, flunixin was a much more potent inhibitor of platelet aggregation than either of the other two drugs (which were equipotent). At very high drug concentrations (5 X 10-4 M and greater), all three drugs produced the same degree of inhibition of equine platelet aggregation.

Platelet factor 3 activity was made available by exposing horse platelets to 10-5 M adenosine diphosphate or 1:800 acid-soluble collagen; but not by exposure to a suspension of kaolin particles. Only a small portion of the total platelet factor 3 activity was made available on stimulation with either adenosine diphosphate or collagen. Pretreatment of horse platelets with any of the nonsteroidal anti-inflammatory drugs (10-4 M concentration) had no significant effect on adenosine diphosphate or collagen-induced platelet factor 3 availability.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号