首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fragmented landscape of the Midwest USA includes prairie remnants embedded in an agricultural matrix, potentially impermeable to dispersing individuals. We examined butterfly responses to local (environmental variables measured within the prairie fragment itself such as vegetative characteristics) and landscape (environmental variables measured up to 2 km surrounding the fragment, but not the fragment itself) factors at 20 prairie remnants in Iowa. Our objectives were to: 1) document how the composition and configuration of the landscape affects butterfly community within the fragment, 2) determine whether explanatory power is gained by including both landscape and local variables rather than only local variables, and 3) analyze differences in butterfly community composition between linear and block shaped fragments. Results from partial least squares regression suggest there are significant effects of the landscape on butterfly community composition at all spatial extents investigated. The local variable that was most highly correlated with butterfly community response was percentage litter, while percentage of roads was the most important variable at all landscape spatial extents. Ordination diagrams clearly separate linear from block sites based on butterfly community composition. Variance partitioning using partial canonical correspondence analysis indicated that landscape variables at all spatial extents add additional explanatory power beyond local variables with little overlap in percentage of variation explained. Our results suggest that butterflies are making decisions based both on the local and landscape environmental factors, thus land surrounding prairie remnants should be included in management decisions.  相似文献   

2.
Agricultural intensification has led to dramatic losses in biodiversity over the past several decades. Many studies have shown the effects of intensification on vegetation or soil communities at field or local scales. However, the functional significance of biodiversity may only appear at larger spatial and temporal scales, due to exchanges among local ecosystems throughout a landscape. To examine how patterns of biodiversity loss are reflected at larger spatial scales, plant and soil biodiversity and associated indicators of ecosystem functions were assessed in riparian areas over a 150 km2 agricultural landscape in the Sacramento Valley of California. Publicly-available GIS data were first used to classify and select sites over the range of soils, topography and plant community types. Representative sites from the landscape were sampled for soil physiochemical properties, as well as microbial, nematode, and plant communities. Higher agricultural intensification, based on field and landscape indices, was negatively correlated with richness and diversity of plant and soil taxa, and was related to indicators of ecosystem functions, such as increased soil nitrate and phosphorus loading, decreased riparian health ratings, and lower soil carbon, soil microbial biomass and soil food web structure. Both field- and landscape-scale factors played important roles in the measured losses. The study area was composed of a wide array of soils, vegetation, and land management, indicating that the observed trends transcended site-specific conditions.  相似文献   

3.
Nest predation is an important cause of mortality for many bird species, especially in grassland ecosystems where generalist predators have responded positively to human disturbance and landscape fragmentation. Our study evaluated the influence of the composition and configuration of the surrounding landscape on nest predation. Transects consisting of 10 artificial ground nests each were set up in 136 roadsides in six watersheds in south-central Iowa. Nest predation on individual roadside transects ranged from 0 to 100% and averaged 23%. The relationship of landscape structure within spatially-nested landscapes surrounding each roadside transect (within 200, 400, 800, 1200, and 1600 m of the transect line) to nest predation was evaluated by using multiple regression and canonical correlation analyses. The results of this multiscale landscape analysis demonstrated that predation on ground nests was affected by the surrounding landscape mosaic and that nest predators with different-sized home ranges and habitat affinities responded to landscapes in different ways. In general, wooded habitats were associated with greater nest predation, whereas herbaceous habitats (except alfalfa/pasture) either were associated with less nest predation or were not important. Different landscape variables were important at different spatial scales. Whereas some block-cover habitats such as woodland were important at all scales, others such as rowcrops and alfalfa/pasture were important at large scales. Some strip-cover habitats such as gravel roads and paved roads were important at small scales, but others such as wooded roadsides were important at all all scales. Most landscape metrics (e.g., mean patch size and edge density) were important at large scales. Our study demonstrated that the relationships between landscape structure and predator assemblages are complex, thus making efforts to enhance avian productivity in agricultural landscapes a difficult management goal.  相似文献   

4.
In long term studies the following climatological characteristics were measured or calculated: air and soil temperature, sunshine, wind speed, vapor pressure, saturation deficit, precipitation, humidity, incoming and reflected solar energy, energy emitted by active surfaces and primary production. Taking into account the relationships between climatological characteristics, the growth stages of vegetation, and relations between heat balance components, the fluxes of energy used for evapotranspiration, air, and soil heating were estimated in various ecosystems composing the agricultural landscape. The energy contained in biomass production of various crops was estimated also. Aggregate estimates of energy flow connected with evapotranspiration, and soil and air heating were calculated for eight model landscapes which differed by the plant cover structure. A higher variability of energy fluxes was observed for individual ecosystems than for agricultural land-scapes. It was shown that the structure of the plant cover has an important bearing on energy flow and water cycling both by direct and indirect influences. Shelterbelts are especially important in their influence on energy flow and water cycling.Studies carried out within the project CPBP.04.10.03.  相似文献   

5.
Ecological processes such as plant–animal interactions have a critical role in shaping the structure and function of ecosystems, but little is known of how such processes are modified by changes in landscape structure. We investigated the effect of landscape change on mistletoe parasitism in fragmented agricultural environments by surveying mistletoes on eucalypt host trees in 24 landscapes, each 100 km2 in size, in south-eastern Australia. Landscapes were selected to represent a gradient in extent (from 60% to 2% cover) and spatial pattern of remnant wooded vegetation. Mistletoes were surveyed at 15 sites in each landscape, stratified to sample five types of wooded elements in proportion to their relative cover. The incidence per landscape of box mistletoe (Amyema miquelii), the most common species, was best explained by the extent of wooded cover (non-linear relationship) and mean annual rainfall. Higher incidence occurred in landscapes with intermediate levels of cover (15–30%) and higher rainfall (>500 mm). Importantly, a marked non-linear decline in the incidence of A. miquelii in low-cover landscapes implies a disproportionate loss of this species in remaining wooded vegetation, greater than that attributable to decreasing forest cover. The most likely mechanism is the effect of landscape change on the mistletoebird (Dicaeum hirundinaceum), the primary seed-dispersal vector for A. miquelii. Our results are consistent with observations that habitat fragmentation initially enhances mistletoe occurrence in agricultural environments; but in this region, when wooded vegetation fell below a threshold of ~15% landscape cover, the incidence of A. miquelii declined precipitously. Conservation management will benefit from greater understanding of the components of landscape structure that most influence ecological processes, such as mistletoe parasitism and other plant–animal mutualisms, and the critical stages in such relationships. This will facilitate action before critical thresholds are crossed and cascading effects extend to other aspects of ecosystem function.  相似文献   

6.
Landscape structure can influence demographics of spatially structured populations, particularly less vagile organisms such as amphibians. We examined the influence of agricultural landscape structure on community composition and relative abundance of the 4 most common amphibians in the Southern High Plains of central USA. Amphibian populations were monitored using pitfall traps and drift fence at 16 playa wetlands (8 playas/year) in 1999 and 2000. We quantified landscape structure surrounding each playa via estimating 13 spatial metrics that indexed playa isolation and inter-playa landscape complexity. Multivariate ordination and univariate correlations and regressions indicated that landscape structure was associated with community composition and relative abundance for 2 of the 4 amphibians. Spadefoots (Spea multiplicata, S. bombifrons) generally were positively associated with decreasing inter-playa distance and increasing inter-playa landscape complexity. Great Plains toads (Bufo cognatus) and barred tiger salamanders (Ambystoma tigrinum mavortium) usually were negatively associated with spadefoots but not influenced by landscape structure. Composition and relative abundance patterns were related to amphibian body size, which can influence species vagility and perception to landscape permeability. Spatial separation of these species in the multivariate ordination also may have been a consequence of differential competitive ability among species. These results suggest agricultural landscape structure may influence abundance and composition of spatially structured amphibian populations. This also is the first applied documentation that inter-patch landscape complexity can affect intra-patch community composition of amphibians as predicted by metapopulation theory. In the Southern High Plains, landscape complexity is positively associated with agricultural cultivation. Agricultural cultivation increases sedimentation, decreases hydroperiod, alters amphibian community dynamics, and negatively impacts postmetamorphic body size of amphibians in playa wetlands. Thus, conservation efforts should focus on preserving or restoring native landscape structure, hydroperiod, and connectivity among playas to maintain native amphibian populations and historic inter-playa movement.  相似文献   

7.
8.

Context

The landscape heterogeneity hypothesis states that increased heterogeneity in agricultural landscapes will promote biodiversity. However, this hypothesis does not detail which components of landscape heterogeneity (compositional or configurational) most affect biodiversity and how these compare to the effects of surrounding agricultural land-use.

Objectives

Our objectives were to: (1) assess the influence of the components of structural landscape heterogeneity on taxonomic diversity; and (2) compare the effects of landscape heterogeneity to those of different types of agricultural land-use in the same landscape across different taxonomic groups.

Methods

We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an agricultural mosaic of north-eastern Swaziland. We tested how bird, dung beetle, ant and meso-carnivore richness and diversity responded to compositional and configurational heterogeneity and agricultural land-use across five different spatial scales.

Results

Compositional heterogeneity best explained species richness in each taxonomic group. Bird and ant richness were both positively correlated with compositional heterogeneity, whilst dung beetle richness was negatively correlated. Commercial agriculture positively influenced bird species richness and ant diversity, but had a negative influence on dung beetle richness. There was no effect of either component of heterogeneity on the combined taxonomic diversity or richness at any spatial scale.

Conclusions

Our results suggest that increasing landscape compositional heterogeneity and limiting the negative effects of intensive commercial agriculture will foster diversity across a greater number of taxonomic groups in agricultural mosaics. This will require the implementation of different strategies across landscapes to balance the contrasting influences of compositional heterogeneity and land-use. Strategies that couple large patches of core habitat across broader scales with landscape structural heterogeneity at finer scales could best benefit biodiversity.
  相似文献   

9.
There was no significant correlation between the size of habitat islands in cropped fields and the density of field vole, bank vole, and common shrew populations during autumn. Despite this, winter densities of perching raptors were considerably higher in small islands than in large one. Explanations for this, apparently suboptimal, hunting pattern are discussed. The distribution should increase predation mortality for small rodents in small compared to large patches and may have been the cause of the higher winter mortality actually found for field voles in small patches.  相似文献   

10.

Context

Species distributions are a function of an individual’s ability to disperse to and colonize habitat patches. These processes depend upon landscape configuration and composition.

Objectives

Using Blanchard’s cricket frogs (Acris blanchardi), we assessed which land cover types were predictive of (1) presence at three spatial scales (pond-shed, 500 and 2500 m) and (2) genetic structure. We predicted that forested, urban, and road land covers would negatively affect cricket frogs. We also predicted that agricultural, field, and aquatic land covers would positively affect cricket frogs.

Methods

We surveyed for cricket frogs at 28 sites in southwestern Ohio, USA to determine presence across different habitats and analyze genetic structure among populations. For our first objective, we examined if land use (crop, field, forest, and urban habitat) and landscape features (ponds, streams, and roads) explained presence; for our second objective, we assessed whether these land cover types explained genetic distance between populations.

Results

Land cover did not have a strong influence on cricket frog presence. However, multiple competing models suggested effects of roads, streams, and land use. We found genetic structuring: populations were grouped into five major clusters and nine finer-scale clusters. Highways were predictive of increased genetic distance.

Conclusions

By combining a focal-patch study with landscape genetics, our study suggests that major roads and waterways are key features affecting species distributions in agricultural landscapes. We demonstrate that cricket frogs may respond to landscape features at larger spatial scales, and that presence and movement may be affected by different environmental factors.
  相似文献   

11.
Pollination contributes to both human food security and the reproduction of the majority of wild plant species, but pollinators are facing a rapid decline, a major cause of which is habitat conversion and degradation due to human activities. Urbanization is one of the major types of habitat conversion, but its influence on pollination has been surprisingly mixed, ranging from markedly negative to strongly positive effects. One hypothesis proposed to explain these discrepancies is that pollinator responses to urbanization are highly dependent on the non-urban control habitat, with negative effects when the controls are natural or semi-natural areas but positive when they are intensive agricultural areas. It was also proposed that the pollination response along an agricultural-to-urban gradient is non-linear, with maximum pollination observed at an intermediate level of urbanization due to increased environmental heterogeneity. To test these two hypotheses, we selected a group of 38 sites in a peri-urban area near Paris, France, using a semi-stratified sampling strategy that ensured that all three of the urban, agricultural and semi-natural gradients were maximized. We then estimated pollination using two approaches: we evaluated the pollination success of Lotus corniculatus, a strictly entomogamous self-sterile plant species pollinated mainly by bees, and we measured the species richness of entomogamous and non-entomogamous plants, the difference in their response being expected to relate to the pollination service provided by the overall pollinator community. We found that in our study area, pollination success of L. corniculatus responds positively to the agricultural to urban gradient but not to the semi-natural to urban gradient. The diversity of both entomogamous and non-entomogamous plants is highest at sites surrounded by intermediate proportions of urban and agricultural areas. In addition, high proportions of urban areas have a negative effect on the diversity of non-entomogamous but not entomogamous plant species, suggesting that pollinators are able to partially buffer entomogamous plant species against the negative effect of urban development. Our results show the importance of urban areas in pollination conservation plans and demonstrate that the interaction between different anthropogenic land-use is an important factor for understanding pollination.  相似文献   

12.
Management may influence abiotic environments differently across time and spatial scale, greatly influencing perceptions of fragmentation of the landscape. It is vital to consider a priori the spatial scales that are most relevant to an investigation, and to reflect on the influence that scale may have on conclusions. While the importance of scale in understanding ecological patterns and processes has been widely recognized, few researchers have investigated how the relationships between pattern and process change across spatial and temporal scales. We used wavelet analysis to examine the multiscale structure of surface and soil temperature, measured every 5 m across a 3820 m transect within a national forest in northern Wisconsin. Temperature functioned as an indicator – or end product – of processes associated with energy budget dynamics, such as radiative inputs, evapotranspiration and convective losses across the landscape. We hoped to determine whether functional relationships between landscape structure and temperature could be generalized, by examining patterns and relationships at multiple spatial scales and time periods during the day. The pattern of temperature varied between surface and soil temperature and among daily time periods. Wavelet variances indicated that no single scale dominated the pattern in temperature at any time, though values were highest at finest scales and at midday. Using general linear models, we explained 38% to 60% of the variation in temperature along the transect. Broad categorical variables describing the vegetation patch in which a point was located and the closest vegetation patch of a different type (landscape context) were important in models of both surface and soil temperature across time periods. Variables associated with slope and microtopography were more commonly incorporated into models explaining variation in soil temperature, whereas variables associated with vegetation or ground cover explained more variation in surface temperature. We examined correlations between wavelet transforms of temperature and vegetation (i.e., structural) pattern to determine whether these associations occurred at predictable scales or were consistent across time. Correlations between transforms characteristically had two peaks; one at finer scales of 100 to 150 m and one at broader scales of >300 m. These scales differed among times of day and between surface and soil temperatures. Our results indicate that temperature structure is distinct from vegetation structure and is spatially and temporally dynamic. There did not appear to be any single scale at which it was more relevant to study temperature or this pattern-process relationship, although the strongest relationships between vegetation structure and temperature occurred within a predictable range of scales. Forest managers and conservation biologists must recognize the dynamic relationship between temperature and structure across landscapes and incorporate the landscape elements created by temperature-structure interactions into management decisions.  相似文献   

13.
Landscape structure, or the spatial organization of different land units, has an impact on erosion and sedimentation on agricultural land. However, current erosion models emphasize the temporal, and less the spatial, variability of relevant parameters so that the effects of changes in landscape structure have hitherto not been studied in detail. Therefore, a spatially distributed water and tillage erosion model that allows the incorporation of landscape structure is presented. The model is applied to three study sites in the Belgian Loam Belt where significant changes in landscape structure occurred over the last fifty years. Erosion rates were shown to change by up to 28% however, with decreases as well as increases occurring. These could be explained by the interaction of changes in land use with changes in the position of field boundaries. Thus, landscape structure is an important control when the effect of environmental change on erosion risk is to be assessed.  相似文献   

14.
Understanding species-diversity patterns in heterogeneous landscapes invites comprehensive research on how scale-dependent processes interact across scales. We used two common beetle families (Tenebrionidae, detrivores; Carabidae, predators) to conduct such a study in the heterogeneous semi-arid landscape of the Southern Judean Lowland (SJL) of Israel, currently undergoing intensive fragmentation. Beetles were censused in 25 different-sized patches (500–40,000 m2). We used Fisher’s α and non-parametric extrapolators to estimate species diversity from 11,125 individuals belonging to 56 species. Patch characteristics (plant species diversity and cover, soil cover and degree of stoniness) were measured by field transects. Spatial variables (patch size, shape, physiognomy and connectivity) and landscape characteristics were analyzed by GIS and remote-sensing applications. Both patch-scale and landscape-scale variables affected beetle species diversity. Path-analysis models showed that landscape-scale variables had the strongest effect on carabid diversity in all patches. The tenebrionids responded differently: both patch-scale and landscape-scale variables affected species diversity in small patches, while mainly patch-scale variables affected species diversity in large patches. Most of the paths affected species diversity both directly and indirectly, combining the effects of both patch-scale and landscape-scale variables. These results match the biology of the two beetle families: Tenebrionidae, the less mobile and more site-attached family, responded to the environment in a fine-grained manner, while the highly dispersed Carabidae responded to the environment in a coarse-grained manner. We suggest that understanding abiotic and biotic variable interactions across scales has important consequences for our knowledge of community structure and species diversity patterns at large spatial scales.  相似文献   

15.
The effects of habitat area and fragmentation are confounded in many studies. Since a reduction in habitat area alone reduces patch size and increases patch isolation, many studies reporting fragmentation effects may really be documenting habitat-area effects. We designed an experimental landscape system in the field, founded on fractal neutral landscape models, to study arthropod community responses to clover habitat in which we adjusted the level of fragmentation independently of habitat area. Overall, habitat area had a greater and more consistent effect on morphospecies richness than fragmentation. Morphospecies richness doubled between 10 and 80% habitat, with the greatest increase occurring up to 40% habitat. Fragmentation had a more subtle and transient effect, exhibiting an interaction at intermediate levels of habitat only at the start of the study or in the early-season (June) survey. In these early surveys, morphospecies richness was higher in clumped 40–50% landscapes but higher in fragmented landscapes at 60–80% habitat. Rare or uncommon species are expected to be most sensitive to fragmentation effects, and we found a significant interaction with fragmentation at intermediate levels of habitat for these types of morphospecies in early surveys. Although the effects of fragmentation are expected to amplify at higher trophic levels, all trophic levels exhibited a significant fragmentation effect at intermediate levels of habitat in these early surveys. Predators/parasitoids were more sensitive to habitat area than herbivores, however. Thus, our results confirm that habitat area is more important than fragmentation for predicting arthropod community responses, at least in this agricultural system.  相似文献   

16.
Habitat fragmentation strongly affects insect species diversity and community composition, but few studies have examined landscape effects on long term development of insect communities. As mobile consumers, insects should be sensitive to both local plant community and landscape context. We tested this prediction using sweep-net transects to sample insect communities for 8 years at an experimentally fragmented old-field site in northeastern Kansas, USA. The site included habitat patches undergoing secondary succession, surrounded by a low turf matrix. During the first 5 years, plant richness and cover were measured in patches. Insect species richness, total density, and trophic diversity increased over time on all transects. Cover of woody plants and perennial forbs increased each year, adding structural complexity to successional patches and potentially contributing to increased insect diversity. Within years, insect richness was significantly greater on transects through large successional patches (5000 m2) than on transects through fragmented arrays of 6 medium-sized (total area 1728 m2) or 15 small (480 m2) patches. However, plant cover did not differ among patch types and was uncorrelated with insect richness within years. Insect richness was strongly correlated with insect density, but trophic and α diversities did not differ among patch types, indicating that patch insect communities were subsets of a common species pool. We argue that differences in insect richness resulted from landscape effects on the size of these subsets, not patch succession rates. Greater insect richness on large patches can be explained as a community-level consequence of population responses to resource concentration.  相似文献   

17.
Landscape Ecology - Landscape structure can affect seed dispersal, but the spatial scale at which such effect is maximized (scale of effect, SoE) is unknown. We assessed patterns and predictors of...  相似文献   

18.
The distribution of woody vegetation was studied in forest edges and hedgerows in a 28 km2 southern Swedish agricultural area, characterised by species-rich edge zones. The occurrence of 21 selected woody species (taxa) was related to differences in both edge structure and landscape structure. All the species studied were represented in both edge types, but a higher frequency of animal-dispersed species was found in hedgerows.Animal dispersed species were more affected by edge width and density than wind dispersed species. A higher number of wind-dispersed species were more frequent in forest edges, in hedgerows near to forest, or with a high proportion of forest within 500 m. A clear relationship was found between the number of physically connected elements in hedgerow networks and increasing frequency of occurrence for Corylus avellana, Crataegus spp., Euonymus europaeus, and Quercus robur; which indicate the ecological significance of connectedness for certain animal dispersed species. The study supports the general principle that woody species distribution and landscape structure are linked in a positive feedback loop. The results match findings from studies in other countries and are interpreted in the context of landscape processes and the ecological characteristics of woody plant species. We emphasise the importance of understanding dispersal mechanisms of woody species for the design and improvement of edge habitats in agricultural landscapes.  相似文献   

19.
20.

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号