首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Context

Golden-cheeked warblers (Setophaga chrysoparia), an endangered wood-warbler, breed exclusively in woodlands co-dominated by Ashe juniper (Juniperus ashei) in central Texas. Their breeding range is becoming increasingly urbanized and habitat loss and fragmentation are a main threat to the species’ viability.

Objectives

We investigated the effects of remotely sensed local habitat and landscape attributes on point occupancy and density of warblers in an urban preserve and produced a spatially explicit density map for the preserve using model-supported relationships.

Methods

We conducted 1507 point-count surveys during spring 2011–2014 across Balcones Canyonlands Preserve (BCP) to evaluate warbler habitat associations and predict density of males. We used hierarchical Bayesian models to estimate multiple components of detection probability and evaluate covariate effects on detection probability, point occupancy, and density.

Results

Point occupancy was positively related to landscape forest cover and local canopy cover; mean occupancy was 0.83. Density was influenced more by local than landscape factors. Density increased with greater amounts of juniper and mixed forest and decreased with more open edge. There was a weak negative relationship between density and landscape urban land cover.

Conclusions

Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.
  相似文献   

2.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

3.

Context

Increasing demands on land for agriculture have resulted in large-scale clearance and fragmentation of forests globally. In fragmented landscapes, species that tolerate or exploit the matrix will persist, while those that do not, frequently decline. Knowledge of matrix use is therefore critical to predicting extinction proneness of species in modified landscapes and defining the value of land for conservation management.

Objectives

In a fragmented landscape consisting of seven remnant patches surrounded by agricultural land and a large Eucalyptus forest, we explored (i) population connectivity of common ringtail possums, Pseudocheirus peregrinus, to determine the permeability of the agricultural matrix, and (ii) genetic consequences of forest fragmentation.

Methods

238 common ringtail possums were screened at 14 microsatellite markers and analysed using a range of genetic techniques.

Results

We observed significant genetic differentiation among all patches and limited dispersal through the agricultural matrix, even between neighbouring patches. Consequences of this were a six- to ten-fold increase in genetic dissimilarity over an equivalent geographic distance across patches compared with sites in the continuous forest and a significant reduction in genetic diversity, particularly in patches that were geographically more isolated from their neighbours.

Conclusions

We conclude that the agricultural matrix has a number of characteristics that make it unsuitable for facilitating movement of possums through this landscape, and recommend several management strategies to mitigate the impacts of fragmentation on this and other arboreal species for their conservation.
  相似文献   

4.

Context

Mediterranean forests have been fragmented intensively over time, thereby yielding small and isolated forest remnants. They host a rich variety of epiphytes, which may be affected by landscape structure. Previous studies have analyzed the influence of habitat quality on these epiphytic communities, but there is little knowledge of the effects of other fragment features.

Objectives

We evaluated the impacts of forest loss and fragmentation on epiphytic communities (lichens and bryophytes) at plot and fragment scales after controlling the variation in forest structure and management.

Methods

We considered 40 fragments of dense oak forests in a human-modified landscape. We quantified their spatial attributes (size and shape), the quality of the surrounding matrix and the forest stand structure. We modeled community traits, and the presence and abundance of species at fragment and plot scales.

Results

Fragment size, shape, and the quality of the surrounding matrix were key factors that affected epiphytic richness and diversity. Larger and more regularly shaped fragments hosted the richest and most diverse communities, possibly offering a larger core area and thus favoring the entry of typical forest species. A high-contrast matrix was only favorable in small fragments, probably allowing the arrival of propagules. The species-level response was highly variable.

Conclusions

Landscape structure provides powerful explanations of the richness and diversity losses among epiphytes. Forest management should ensure the retention of the largest possible continuous forests. The management strategy of the matrix will depend on the conservation goal, since we observed different effects related with quality and fragment size.
  相似文献   

5.

Context

Seed dispersal is recognized as having profound effects on the distribution, dynamics and structure of plant populations and communities. However, knowledge of how landscape structure shapes carnivore-mediated seed dispersal patterns is still scarce, thereby limiting our understanding of large-scale plant population processes.

Objectives

We aim to determine how the amount and spatial configuration of forest cover impacted the relative abundance of carnivorous mammals, and how these effects cascaded through the seed dispersal kernels they generated.

Methods

Camera traps activated by animal movement were used for carnivore sampling. Colour-coded seed mimics embedded in common figs were used to know the exact origin of the dispersed seed mimics later found in carnivore scats. We applied this procedure in two sites differing in landscape structure.

Results

We did not find between-site differences in the relative abundance of the principal carnivore species contributing to seed dispersal patterns, Martes foina. Mean dispersal distance and the probability of long dispersal events were higher in the site with spatially continuous and abundant forest cover, compared to the site with spatially aggregated and scarcer forest cover. Seed deposition closely matched the spatial patterning of forest cover in both study sites, suggesting behaviour-based mechanisms underpinning seed dispersal patterns generated by individual frugivore species.

Conclusions

Our results provide the first empirical evidence of the impact of landscape structure on carnivore-mediated seed dispersal kernels. They also indicate that seed dispersal kernels generated strongly depend on the effect that landscape structure exerts on carnivore populations, particularly on habitat-use preferences.
  相似文献   

6.

Context

The anthropocene is characterised by global landscape modification, and the structure of remnant habitats can explain different patterns of species richness. The most pervasive processes of degradation include habitat loss and fragmentation. However, a recovery of modified landscape is occurring in some areas.

Objectives

The main goal is to know how lichen and bryophyte epiphytic richness growing on Mediterranean forests is influenced not only by fragments characteristics but also by the structure of the landscape. We introduce a temporal dimension in order to evaluate if the historical landscape structure is relevant for current epiphytic communities.

Methods

40 well-preserved forest fragments were selected in a landscape with a large habitat loss over decades, but with a recovery of forest surface in the last 55 years. The most relevant fragment and landscape-scale attributes were considered. Some of the variables were measured in three different years to incorporate a temporal framework.

Results

The results showed that variables at fragment scale had a higher influence, whereas variables at the landscape scale were irrelevant. Among all the historical variables analyzed, only the shift in forest fragment size had influence on species richness.

Conclusions

Mediterranean forests had suffered fragmentation along centuries. Their epiphytic communities also suffer the hard conditions of Mediterranean climate. Our results indicate that Mediterranean epiphytic communities may be in a threshold since it they will never be similar to those communities existing previous fragmentation process even a recovery habitat occur or, they may require more time to response to this habitat recovery.
  相似文献   

7.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

8.

Context

Field inventory plots which usually have small sizes of around 0.25–1 ha can only represent a sample of the much larger surrounding forest landscape. Based on airborne laser scanning (LiDAR) it has been shown for tropical forests that the bias in the selection of small field plots may hamper the extrapolation of structural forest attributes to larger spatial scales.

Objectives

We conducted a LiDAR study on tropical montane forest and evaluated the representativeness of chosen inventory plots with respect to key structural attributes.

Methods

We used six forest inventory and their surrounding landscape plots on Mount Kilimanjaro in Tanzania and analyzed the similarities for mean top-of-canopy height (TCH), aboveground biomass (AGB), gap fraction, and leaf-area index (LAI). We also analyzed the similarity in gap-size frequencies for the landscape plots.

Results

Mean biases between inventory and landscape plots were large reaching as much as 77% for gap fraction, 22% for LAI or 15% for AGB. Despite spatial heterogeneity of the landscape, gap-size frequency distributions were remarkably similar between the landscape plots.

Conclusions

The study indicates that biases in field studies of forest structure may be strong. Even when mean values were similar between inventory and landscape plots, the mostly non-normally distributed probability densities of the forest variable indicated a considerable sampling error of the small field plot to approximate the forest variable in the surrounding landscape. This poses difficulties for the spatial extrapolation of forest structural attributes and for assessing biomass or carbon fluxes at larger regional scales.
  相似文献   

9.

Context

The application of regional-level airborne lidar (light detection and ranging) data to characterize habitat patches and model habitat connectivity over large landscapes has not been well explored. Maintaining a connected network of habitat in the presence of anthropogenic disturbances is essential for regional-level conservation planning and the maintenance of biodiversity values.

Objectives

We quantified variation in connectivity following simulated changes in land cover and contrasted outcomes when different conservation priorities were emphasized.

Methods

First, we defined habitat patches using vegetation structural attributes identified via lidar. Second, habitat networks were constructed for different forest types and assessed using network connectivity metrics. And finally, land cover change scenarios were simulated using a series of habitat patch removals, representing the impact of implementing different spatial prioritization schemes.

Results

Networks for different forest structure types produced very different patch distributions. Conservation scenarios based on different schemes led to contrasting changes during land cover change simulations: the scheme prioritizing only habitat area resulted in immediate near-term losses in connectivity, whereas the scheme considering both habitat area and their spatial configurations maintained the overall connectivity most effectively. Adding climate constraints did not diminish or improve overall connectivity.

Conclusions

Both habitat area and habitat configuration should be considered in dynamic modeling of habitat connectivity under changing landscapes. This research provides a framework for integrating forest structure and cover attributes obtained from remote sensing data into network connectivity modeling, and may serve as a prototype for multi-criteria forest management and conservation planning.
  相似文献   

10.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

11.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

12.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

13.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

14.
15.

Context

Competitive interactions potentially play an important role in structuring bird communities. It is unclear how differences in functional traits influence the niche dimensions of highly mobile waterbird species, particularly when they co-exist in spatiotemporally heterogeneous communities.

Objectives

We investigated the inter-relationships between waterbird trait groupings (movement, dietary and foraging habitat) and environmental variable groupings (rainfall, land cover, vegetation structure and water quality). Specifically, we tested whether the scale of environmental variables filtered movement traits and whether these traits operated in conjunction with dietary and foraging habitat traits to form distinct ecological niches in waterbirds.

Methods

We conducted waterbird and environmental variable surveys in 60 sites, sampled seven times each at bimonthly intervals, in KwaZulu-Natal, South Africa. Trait-environment relationships were tested using a combination of RLQ and fourth-corner analyses.

Results

Several significant trait-environment relationships emerged in bivariate correlations and multivariate ordination space. Movement traits correlated with the scale of environmental variables; migrant and nomadic species responded to broad scale environmental variables. Vegetation structure and land cover were particularly important in explaining the abundance of species foraging in emergent vegetation. Three groups emerged along a gradient in multivariate ordination space providing evidence for ecological niche separation of waterbirds with different movement traits.

Conclusions

Our findings suggest that the scale of landscape resources can act as a filter of movement traits, and that in conjunction with dietary and foraging traits, waterbirds with different movement traits occupy distinct ecological niches.
  相似文献   

16.

Context

Forest loss and fragmentation negatively affect biodiversity. However, disturbances in forest canopy resulting from repeated deforestation and reforestation are also likely important drivers of biodiversity, but are overlooked when forest cover change is assessed using a single time interval.

Objectives

We investigated two questions at the nexus of plant diversity and forest cover change dynamics: (1) Do multitemporal forest cover change trajectories explain patterns of plant diversity better than a simple measure of overall forest change? (2) Are specific types of forest cover change trajectories associated with significantly higher or lower levels of diversity?

Methods

We sampled plant biodiversity in forests spanning the Charlotte, NC, region. We derived forest cover change trajectories occurring within nested spatial extents per sample site using a time series of aerial photos from 1938 to 2009, then classified trajectories by spatio-temporal patterns of change. While accounting for landscape and environmental covariates, we assessed the effects of the trajectory classes as compared to net forest cover change on native plant diversity.

Results

Our results indicated that forest stand diversity is best explained by forest change trajectories, while the herb layer is better explained by net forest cover change. Three distinct forest change trajectory classes were found to influence the forest stand and herb layer.

Conclusions

The influence of forest dynamics on biodiversity can be overlooked in analyses that use only net forest cover change. Our results illustrate the utility of assessing how specific trajectories of past land cover change influence biodiversity patterns in the present.
  相似文献   

17.

Context

The umbrella approach applied to landscape connectivity is based on the principle that the conservation or restoration of the dispersal habitats for some species also can facilitate the movement of others. Species traits alone do not seem to be enough to identify good connectivity umbrella species, showing the need to investigate the influence of additional factors on this property.

Objectives

We test whether the potential of a species as a connectivity umbrella can be influenced by landscape composition and configuration.

Methods

We simulated movement routes for eight hypothetical species in artificial patchy landscapes with different levels of fragmentation, habitat amount and matrix permeability. We determined the effectiveness of the connectivity umbrella of the virtual species using pairwise intersections of important habitats for their movements in all landscapes.

Results

The connectivity umbrella performance of all species was affected by the interaction of fragmentation level and habitat amount. In general, species performance increased with decreasing fragmentation and increasing habitat amount. In most landscapes and considering the same dispersal threshold, species able to move more easily through the matrix showed higher umbrella performance than those for which the matrix offered greater resistance.

Conclusions

The connectivity umbrella is not a static feature that depends only on the species traits, but rather a dynamic property that also varies according to the landscape attributes. Therefore, we do not recommend spatial transferability of the connectivity umbrella species identified in a landscape to others that have divergent levels of fragmentation and habitat quantity.
  相似文献   

18.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

19.

Context

The biodiversity hotspot for conservation of New Caledonia has facing high levels of forest fragmentation. Remnant forests are critical for biodiversity conservation and can help in understanding how does forest fragmentation affect tree communities.

Objective

Determine the effect of habitat configuration and availability on tree communities.

Methods

We mapped forest in a 60 km2 landscape and sampled 93 tree communities in 52 forest fragments following stratified random sampling. At each sampling point, we inventoried all trees with a diameter at breast height ≥10 cm within a radius of 10 m. We then analysed the response of the composition, the structure and the richness of tree communities to the fragment size and isolation, distance from the edge, as well as the topographical position.

Results

Our results showed that the distance from the forest edge was the variable that explained the greatest observed variance in tree assemblages. We observed a decrease in the abundance and richness of animal-dispersed trees as well as a decrease in the abundance of large trees with increasing proximity to forest edges. Near forest edges we found a shift in species composition with a dominance of stress-tolerant pioneer species.

Conclusions

Edge-effects are likely to be the main processes that affect remnant forest tree communities after about a century of forest fragmentation. It results in retrogressive successions at the edges leading to a dominance of stress-tolerant species. The vegetation surrounding fragments should be protected to promote the long process of forest extension and subsequently reduce edge-effects.
  相似文献   

20.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号