首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the southwestern U.S., wildland fire frequency and area burned have steadily increased in recent decades, a pattern attributable to multiple ignition sources. To examine contributing landscape factors and patterns related to the occurrence of large (⩾20 ha in extent) fires in the forested region of northern Arizona, we assembled a database of lightning- and human-caused fires for the period 1 April to 30 September, 1986–2000. At the landscape scale, we used a weights-of-evidence approach to model and map the probability of occurrence based on all fire types (n = 203), and lightning-caused fires alone (n = 136). In total, large fires burned 101,571 ha on our study area. Fires due to lightning were more frequent and extensive than those caused by humans, although human-caused fires burned large areas during the period of our analysis. For all fires, probability of occurrence was greatest in areas of high topographic roughness and lower road density. Ponderosa pine (Pinus ponderosa)-dominated forest vegetation and mean annual precipitation were less important predictors. Our modeling results indicate that seasonal large fire events are a consequence of non-random patterns of occurrence, and that patterns generated by these events may affect the regional fire regime more extensively than previously thought. Identifying the factors that influence large fires will improve our ability to target resource protection efforts and manage fire risk at the landscape scale.  相似文献   

2.
We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial distribution of vegetation management activities to meet objectives primarily related to forest composition and recreation. The model simulates the spatial dynamics of differential reproduction, dispersal, and succession patterns using the vital attributes of species as they are influenced by the abiotic environment and disturbance. We simulated 50 replicates of each management alternative and recorded the presence of species age cohorts capable of sustaining canopy fire and the occurrence of fire over 250 years. We combined these maps of fuel and fire to map the probability of canopy fires across replicates for each alternative. Canopy fire probability varied considerably by land type. There was also a subtle, but significant effect of management alternative, and there was a significant interaction between land type and management alternative. The species associated with high-risk fuels (conifers) tend to be favored by management alternatives with more disturbances, whereas low disturbance levels favor low-risk northern hardwood systems dominated by sugar maple. The effect of management alternative on fire risk to individual human communities was not consistent across the landscape. Our results highlight the value of the LANDIS model for identifying specific locations where interacting factors of land type and management strategy increase fire risk.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
Fire is an important natural disturbance in the Mediterranean-climate coastal shrublands of southern California. However, anthropogenic ignitions have increased fire frequency to the point that it threatens the persistence of some shrub species and favors the expansion of exotic annual grasses. Because human settlement is a primary driver of increased ignitions, we integrated a landscape model of disturbance and succession (LANDIS) with an urban growth model (UGM) to simulate the combined effects of urban development and high fire frequency on the distribution of coastal shrublands. We tested whether urban development would contribute to an expansion of the wildland-urban interface (WUI) and/or change in average fire return intervals and compared the relative impacts of direct habitat loss and altered fire regimes on functional vegetation types. We also evaluated two methods of integrating the simulation models. The development pattern predicted by the UGM was predominantly aggregated, which minimized the expansion of the WUI and increase in fire frequency, suggesting that fire risk may be higher at intermediate levels of urbanization due to the spatial arrangement of ignition sources and fuel. The comparison of model coupling methods illustrated how cumulative effects of repeated fires may occur gradually as urban development expands across the landscape. Coastal sage scrub species and resprouting chaparral were more susceptible to direct habitat loss, but increased fire frequency was more of a concern to obligate seeder species that germinate from a persistent seed bank. Simulating different scenarios of fire frequency and urban growth within one modeling framework can help managers locate areas of highest risk and determine which vegetation types are most vulnerable to direct habitat loss, altered fire regimes, or both.  相似文献   

4.
There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire. In this study we quantified shrub characteristics and tree regeneration patterns in stand-replacing patches for five fires in the northern Sierra Nevada. These fires occurred between 1999 and 2008, and our field measurements were conducted in 2010. We analyzed tree regeneration patterns at two scales: patch level, in which field observations and spatial data were aggregated for a given stand-replacing patch, and plot level. Although tree regeneration densities varied considerably across sampled fires, over 50 % of the patches and approximately 80 % all plots had no tree regeneration. The percentage of patches, and to a greater extent plots, without pine regeneration was even higher, 72 and 87 %, respectively. Hardwood regeneration was present on a higher proportion of plots than either the pine or non-pine conifer groups. Shrub cover was generally high, with approximately 60 % of both patches and individual plots exceeding 60 % cover. Patch characteristics (size, perimeter-to-area ratio, distance-to-edge) appeared to have little effect on observed tree regeneration patterns. Conifer regeneration was higher in areas with post-fire management activities (salvage harvesting, planting). Our results indicate that the natural return of pine/mixed-conifer forests is uncertain in many areas affected by stand-replacing fire.  相似文献   

5.
Invasions resulting in the transformation of one ecosystem to another are an increasingly widespread phenomenon. While it is clear that these conversions, particularly between grassland and shrubland systems, have severe consequences, it is often less clear which factors are associated with these conversions. We resampled plots from the 1930s (Weislander VTMs) to test whether two widely assumed factors, changes in fire frequency and nitrogen deposition, are associated with the conversion of coastal sage scrublands to exotic grasslands in southern California. Over the 76-year period, coastal sage scrub cover declined by 49%, being replaced predominantly by exotic grassland species. Grassland encroachment was positively correlated with increased fire frequency and, in areas with low fire frequencies, air pollution (percent fossil carbon as indicated by ∂14C, likely correlated with nitrogen deposition). We conclude that increases in fire frequency and air pollution over the last several decades in southern California may have facilitated the conversion of coastal sage shrubland to exotic grassland systems.  相似文献   

6.
Fire regime characteristics of high-elevation forests on the North Rim of the Grand Canyon, Arizona, were reconstructed from fire scar analysis, remote sensing, tree age, and forest structure measurements, a first attempt at detailed reconstruction of the transition from surface to stand-replacing fire patterns in the Southwest. Tree densities and fire-/non-fire-initiated groups were highly mixed over the landscape, so distinct fire-created stands could not be delineated from satellite imagery or the oldest available aerial photos. Surface fires were common from 1700 to 1879 in the 4,400 ha site, especially on S and W aspects. Fire dates frequently coincided with fire dates measured at study sites at lower elevation, suggesting that pre-1880 fire sizes may have been very large. Large fires, those scarring 25% or more of the sample trees, were relatively infrequent, averaging 31 years between burns. Four of the five major regional fire years occurred in the 1700s, followed by a 94-year gap until 1879. Fires typically occurred in significantly dry years (Palmer Drought Stress Index), with severe drought in major regional fire years. Currently the forest is predominantly spruce-fir, mixed conifer, and aspen. In contrast, dendroecological reconstruction of past forest structure showed that the forest in 1880 was very open, corresponding closely with historical (1910) accounts of severe fires leaving partially denuded landscapes. Age structure and species composition were used to classify sampling points into fire-initiated and non-fire-initiated groups. Tree groups on nearly 60% of the plots were fire-initiated; the oldest such groups appeared to have originated after severe fires in 1782 or 1785. In 1880, all fire-initiated groups were less than 100 years old and nearly 25% of the groups were less than 20 years old. Non-fire-initiated groups were significantly older (oldest 262 years in 1880), dominated by ponderosa pine, Douglas-fir, or white fir, and occurred preferentially on S and W slopes. The mixed-severity fire regime, transitioning from lower-elevation surface fires to mixed surface and stand-replacing fire at higher elevations, appeared not to have been stable over the temporal and spatial scales of this study. Information about historical fire regime and forest structure is valuable for managers but the information is probably less specific and stable for high-elevation forests than for low-elevation ponderosa pine forests.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

7.
Climate and topography are two important controls on spatial patterns of fire disturbance in forests globally, via their influence on fuel moisture and fuel production. To assess the influences of climate and topography on fire disturbance patterns in a temperate forest region, we analyzed the mapped perimeters of fires that burned during 1930–2003 in two national parks in the eastern United States. These were Great Smoky Mountains National Park (GSMNP) in the southern Appalachian Mountains and Shenandoah National Park (SNP) in the central Appalachian Mountains. We conducted GIS analyses to assess trends in area burned under differing climatic conditions and across topographic gradients (elevation, slope position, and aspect). We developed a Classification and Regression Tree model in order to further explore the interactions between topography, climate, and fire. The results demonstrate that climate is a strong driver of both spatial and temporal patterns of wildfire. Fire was most prevalent in the drier SNP than the wetter GSMNP, and during drought years in both parks. Topography also influenced fire occurrence, with relatively dry south-facing aspects, ridges, and lower elevations burning most frequently. However, the strength of topographic trends varied according to the climatic context. Weaker topographic trends emerged in the drier SNP than GSMNP, and during low-PDSI (dry) years than high-PDSI (wet) years in both parks. The apparent influence of climate on the spatial patterning of fire suggests a more general concept, that disturbance-prone landscapes exhibit weaker fine-scale spatial patterning of disturbance than do less disturbance-prone landscapes.  相似文献   

8.
Though fire is considered a natural disturbance, humans heavily influence modern wildfire regimes. Humans influence fires both directly, by igniting and suppressing fires, and indirectly, by either altering vegetation, climate, or both. We used the LANDIS disturbance and succession model to compare the relative importance of a direct human influence (suppression of low intensity surface fires) with an indirect human influence (timber harvest) on the long-term abundance and connectivity of high-risk fuel in a 2791 km2 landscape characterized by a mixture of northern hardwood and boreal tree species in northern Wisconsin. High risk fuels were defined as a combination of sites recently disturbed by wind and sites containing conifer species/cohorts that might serve as ladder fuel to carry a surface fire into the canopy. Two levels of surface fire suppression (high/current and low) and three harvest alternatives (no harvest, hardwood emphasis, and pine emphasis) were compared in a 2×3 factorial design using 5 replicated simulations per treatment combination over a 250-year period. Multivariate analysis of variance indicated that the landscape pattern of high-risk fuel (proportion of landscape, mean patch size, nearest neighbor distance, and juxtaposition with non fuel sites) was significantly influenced by both surface fire suppression and by forest harvest (p > 0.0001). However, the two human influences also interacted with each other (p < 0.001), because fire suppression was less likely to influence fuel connectivity when harvest disturbance was simultaneously applied. Temporal patterns observed for each of seven conifer species indicated that disturbances by either fire or harvest encouraged the establishment of moderately shade-tolerant conifer species by disturbing the dominant shade tolerant competitor, sugar maple. Our results conflict with commonly reported relationships between fire suppression and fire risk observed within the interior west of the United States, and illustrate the importance of understanding key interactions between natural disturbance, human disturbance, and successional responses to these disturbance types that will eventually dictate future fire risk.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

9.
This study considers variations in a regional fire regime that are related to vegetation structure. Using a Geographic Information System, the vegetation of San Diego County, Southern coastal California USA is divided into six generalized classes based on dominant plant form and include: herbaceous, sage scrub, chaparral, hardwood forest, conifer forest and desert. Mapped fire occurrences for the 20th century are then overlain to produce records of stand age, fire frequency and transitional stability for each of the vegetation classes. A ‘Manhattan’ similarity index is used to compare and group transition matrices for the six classes of vegetation. This analysis groups herbaceous, hardwood and conifer forests in one group, sage scrub and chaparral in a second, and desert in a third. In general, sage scrub and chaparral have burned more frequently than other vegetation types during the course of the 20th century. Temporal trends suggest that the rate of burning in shrub-dominated vegetation is either stable (chaparral) or increasing (sage scrub), while the rate of burning in both hardwood and conifer forest is declining. This is consistent with a pattern of increased fire ignitions along the relatively low elevation urban-wildland interface, and an increase in the efficiency of fire suppression in high elevation forests. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Fire has historically been an important ecological factor maintaining southeastern U.S. vegetation. Humans have altered natural fire regimes by fragmenting fuels, introducing exotic species, and suppressing fires. Little is known about how these alterations specifically affect spatial fire extent and pattern. We applied historic (1920 and 1943) and current (1990) GIS fuels maps and the FARSITE fire spread model to quantify the differences between historic and current fire spread distributions. We held all fire modeling variables (wind speed and direction, cloud cover, precipitation, humidity, air temperature, fuel moistures, ignition source and location) constant with exception of the fuel models representing different time periods. Model simulations suggest that fires during the early 1900's burned freely across the landscape, while current fires are much smaller, restricted by anthropogenic influences. Fire extent declined linearly with patch density, and there was a quadratic relationship between fire extent and percent landscape covered by anthropogenic features. We found that as little as 10 percent anthropogenic landcover caused a 50 percent decline in fire extent. Most landscapes (conservation or non-conservation areas) are now influenced by anthropogenic features which disrupt spatial fire behavior disproportionately to their actual size. These results suggest that land managers using fire to restore or maintain natural ecosystem function in pyrogenic systems will have to compensate for anthropogenic influences in their burn planning. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Landscape Ecology - Functional landscape connectivity is vital for the conservation of wildlife species. Landscape connectivity models often overlook factors such as mortality and asymmetry in...  相似文献   

12.
Based on recent needs to accurately understand fire regimes and post-fire vegetation resilience at a supra-level for carbon cycle studies, this article focusses on the coupled history of fire and vegetation pattern for 40 years on a fire-prone area in central Corsica (France). This area has been submitted since the beginning of the 20th century to land abandonment and the remaining land management has been largely controlled by frequent fires. Our objectives were to rebuild vegetation and fire maps in order to determine the factors which have driven the spatial and temporal distribution of fires on the area, what were the feed backs on the vegetation dynamics, and the long-term consequences of this inter-relationship. The results show a stable but high frequency of small fires, coupled with forest expansion over the study period. The results particularly illustrate the spatial distribution of fires according to topography and vegetation, leading to a strong contrast between areas never burnt and areas which have been burnt up to 7 times. Fires, when occuring, affect on average 9 to 12% of the S, SE and SW facing slopes (compared to only 2 to 5% for the N facing slopes), spread recurrently over ridge tops, affect all the vegetation types but reburn preferentially shrublands and grasslands. As these fire-proning parameters have also been shown to decrease the regeneration capacity of forests, this study highlights the needs in spatial studies (both in terms of fire spread and vegetation dynamic) to accurately apprehend vegetation dynamic and functionning in fire-prone areas.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

13.
Landscape connectivity is critical to species persistence in the face of habitat loss and fragmentation. Graph theory is a well-defined method for quantifying connectivity that has tremendous potential for ecology, but its application has been limited to a small number of conservation scenarios, each with a fixed proportion of habitat. Because it is important to distinguish changes in habitat configuration from changes in habitat area in assessing the potential impacts of fragmentation, we investigated two metrics that measure these different influences on connectivity. The first metric, graph diameter, has been advocated as a useful measure of habitat configuration. We propose a second area-based metric that combines information on the amount of connected habitat and the amount of habitat in the largest patch. We calculated each metric across gradients in habitat area and configuration using multifractal neutral landscapes. The results identify critical connectivity thresholds as a function of the level of fragmentation and a parallel is drawn between the behavior of graph theory metrics and those of percolation theory. The combination of the two metrics provides a means for targeting sites most at risk of suffering low potential connectivity as a result of habitat fragmentation.  相似文献   

14.
Landscape Ecology - Spatial patterns of fire severity are influenced by fire-vegetation patch dynamics and topography. Since the late nineteenth century, fire exclusion has increased fuels and...  相似文献   

15.

Context

In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes.

Objectives

To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon.

Methods

We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type.

Results

We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types.

Conclusions

Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
  相似文献   

16.
The frequency and size of wildfires within the Mojave Desert are increasing, possibly due to climate and land cover changes and associated increases in non-native invasive plant biomass, as measured by normalized difference vegetation index (NDVI). These patterns are of particular concern to resource managers in regions where native plant communities are not well adapted to fire. We used an information-theoretic and mixed-model approach to quantify the importance of multiple environmental variables in predicting, separately, the probabilities of occurrence of all fires and the occurrence large (>20 ha) fires in five management units administered by the National Park Service in the Mojave Desert Network and based on fire ignition data obtained for the period 1992–2011. Fire occurrence was strongly associated with areas close to roads, high maximum NDVI values in the year preceding ignition, the desert montane ecological zone, and high topographic roughness. Large fire probability was strongly associated with lightning-caused ignition events, high maximum NDVI values in the spring preceding ignition, high topographic roughness, the middle-elevation shrubland ecological zone, and areas further from roads. Our probabilistic models and maps can be used to explore patterns of fire occurrence based upon variability in NDVI values and to assess the vulnerability of Mojave Desert protected areas to undesirable fire events.  相似文献   

17.
Fire regimes are complex systems that represent an aggregate of spatial and temporal events whose statistical properties are scale dependent. Despite the breadth of research regarding the spatial controls on fire regime variability, few datasets are available with sufficient resolution to test spatially explicit hypotheses. We used a spatially distributed network of georeferenced fire-scarred trees to investigate the spatial structure of fire occurrence at multiple scales. Mantel’s tests and geostatistical analysis of fire-occurrence time series led to inferences about the mechanisms that generated spatial patterns of historical fire synchrony (multiple trees recording fire in a single year) in eastern Washington, USA. The spatial autocorrelation structure of historical fire regimes varied within and among sites, with clearer patterns in the complex rugged terrain of the Cascade Range than in more open and rolling terrain further north and east. Results illustrate that the statistical spatial characteristics of fire regimes change with landform characteristics within a forest type, suggesting that simple relationships between fire frequency, fire synchrony, and forest type do not exist. Quantifying the spatial structures in fire occurrence associated with topographic variation showed that fire regime variability depends on both landscape structure and the scale of measurement. Spatially explicit fire-scar data open new possibilities for analysis and interpretation, potentially informing the design and application of fire management on landscapes, including hazardous fuel treatments and the use of fire for ecosystem restoration.
Donald McKenzieEmail:
  相似文献   

18.
We utilize empirically derived estimates of landscape resistance to assess current landscape connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA, and project how a warming climate may affect landscape resistance and population connectivity in the future. We evaluate the influences of five potential future temperature scenarios involving different degrees of warming. We use resistant kernel dispersal models to assess population connectivity based on full occupancy of suitable habitat in each of these hypothetical future resistance layers. We use the CDPOP model to simulate gene exchange among individual martens in each of these hypothetical future climates. We evaluate: (1) changes in the extent, connectivity and pattern of marten habitat, (2) changes in allelic richness and expected heterozygosity, and (3) changes in the range of significant positive genetic correlation within the northern Idaho marten population under each future scenario. We found that even moderate warming scenarios resulted in very large reductions in population connectivity. Calculation of genetic correlograms for each scenario indicates that climate driven changes in landscape connectivity results in decreasing range of genetic correlation, indicating more isolated and smaller genetic neighborhoods. These, in turn, resulted in substantial loss of allelic richness and reductions in expected heterozygosity. In the U.S. northern Rocky Mountains, climate change may extensively fragment marten populations to a degree that strongly reduces genetic diversity. Our results demonstrate that for species, such as the American marten, whose population connectivity is highly tied to climatic gradients, expected climate change can result in profound changes in the extent, pattern, connectivity and gene flow of populations.  相似文献   

19.
Mediterranean landscapes are suffering two opposing forces leading to large-scale changes in species distribution: land abandonment of less productive areas and an increase in wildfire impact. Here, we test the hypothesis that fires occurred in recent decades drive the pattern of expansion of early-successional, open-habitat bird species by aiding in the process of colonisation of newly burnt areas. The study was carried out in Catalonia (NE Spain). We selected 44 burnt sites occurring between 2000 and 2005 to model colonisation patterns under different assumptions of potential colonisers’ sources and evaluated the colonisation estimates with empirical data on six bird species especially collected for this purpose. We first defined three landscape scenarios serving as surrogates of potential colonisers’ sources: open-habitats created by fire, shrublands and farmlands. Then, we used a parameter derived from a functional connectivity metric to estimate species colonization dynamics on the selected sites by each particular scenario. Finally, we evaluated our colonisation estimates with the species occurrence in the studied locations by using generalized linear mixed models. The occurrence of the focal species on the newly burnt sites was significantly related to the connectivity patterns described by both the recent fire history and the other open-habitat types generated by a different type of disturbance. We suggest that land use changes in recent decades have produced a shift in the relative importance of habitats acting as reservoirs for open-habitat bird species dynamics in Mediterranean areas. Before the middle of the twentieth century species’ reservoirs were probably constituted by relatively static open habitats (grassland and farmland), whereas afterwards they likely consist of a shifting mosaic of habitat patches where fire plays a key role as connectivity provider and largely contributes to the maintenance of species persistence.  相似文献   

20.

Context

Fire is an important driver of ecological processes in semiarid systems and serves a vital role in shrub-grass interactions. In desert grasslands of the southwestern US, the loss of fire has been implicated as a primary cause of shrub encroachment. Where fires can currently be re-introduced given past state changes and recent restoration actions, however, is unknown and controversial.

Objectives

Our objective was to evaluate the interactive effects of climate, urban development, and topo-edaphic properties on fire distribution in the desert grassland region of the southwestern United States.

Methods

We characterized the spatial distribution of fire in the Chihuahuan Desert and Madrean Archipelago ecoregions and investigated the influence of soil properties and ecological site groups compared to other commonly used biophysical variables using multi-model inference.

Results

Soil-landscape properties significantly influenced the spatial distribution of fire ignitions. Fine-textured bottomland ecological site classes experienced more fires than expected in contrast to upland sites with coarse soil textures and high fragment content that experienced fewer fire ignitions than expected. Influences of mean annual precipitation, distance to road/rail, soil available water holding capacity (AWHC) and topographic variables varied between ecoregions and political jurisdictions and by fire season. AWHC explained more variability of fire ignitions in the Madrean Archipelago compared to the Chihuahuan Desert.

Conclusions

Understanding the spatiotemporal distribution of recent fires in desert grasslands is needed to manage fire and predict responses to climate change. The use of landscape units such as ecological sites presents an opportunity to improve predictions at management scales.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号