首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments are described to quantify the effects of temperature and leaf wetness duration on infection of groundnut by Phaeoisariopsis personata. Temperature response curves for conidial germination and infection were similar, with optima close to 20°C and minimum and maximum temperatures of about 8°C and 34 C, respectively. The effect of temperature on infection between 15°C and 26°C was slight. Lesions developed only if the leaf wetness period exceeded about 20 h, and the total wetness period necessary for maximum infection exceeded 160 h. The number of lesions resulting from a fixed amount of inoculum was several times greater if leaves were exposed to alternate wet and dry periods (intermittent wetness), compared with continuous wetness. With intermittent wetness the length of the dry period had little effect on the number of lesions, providing it exceeded 2 h. The response curve relating total wetness periods to lesion density was an exponential asymptote.  相似文献   

2.
Experiments are described to quantify the effects of temperature and duration of leaf wetness on infection of groundnut by Puccinia arachidis. After inoculation, a minimum period of leaf wetness, m. was necessary for infection. When leaf wetness duration was greater than m, lesion density increased with increasing wetness duration to an asymptote, Dmax. The principal effects of temperature were on m and Dmax- The value of m decreased linearly from 6 h, as temperature increased from 15 to 25 C and increased slightly at temperatures greater than 25 C Dmax increased with temperature from zero at 8 C to a maximum at 22 C. and decreased to zero again at about 30 C. The experimental results were used to produce a set of curves relating an infection index to leaf wetness duration at different temperatures. The implications for infection of groundnut crops are discussed in relation to the climate at Patancheru in southern India.  相似文献   

3.
No infection occurred at less than 95% relative humidity (r.h.) when chickpea plants were dried after inoculation with conidia of Didymella rabiei. Infection was significant when the dry leaves were exposed to 98% r.h. for 48 h. When inoculated plants were subjected to different leaf wetness periods, some infection occurred with 4 h wetness, and disease severity increased with wetness duration according to an exponential asymptote, with a maximum value after about 18 h. Germination of conidia and germ tube penetration increased linearly with increasing wetness periods when recorded 42 h after inoculation. With a 24-h wetness period, germination of conidia was first observed 12 h after inoculation and increased linearly with time up to 52 h (end of the experiment). Dry periods immediately after inoculation, followed by 24-h leaf wetness, reduced disease severity; as the dry period increased the severity decreased. Disease severity increased with increasing periods of darkness after inoculation. The number of pycnidia and the production of conidia on infected leaves increased only slightly with high r.h. (either in the light or in the dark), but large increases occurred over an 8-day period when the leaves were kept wet.  相似文献   

4.
Controlled environment studies with Phaeoisariopsis personata , the causal agent of late leaf spot disease of groundnut ( Arachis hypogaea ), have shown that infection is enhanced if leaves are exposed to alternate wet and dry periods (intermittent wetness) compared with continuous wetness. Detailed investigations to elucidate this phenomenon revealed more germ tubes per conidium and more branching of germ tubes with intermittent wetness than with continuous wetness. With intermittent wetness there was clear evidence of tropic growth of germ tubes and branches towards stomata and subsequent penetration. With continuous wetness, germ tube growth did not appear to be directional and germ tubes commonly passed over the stomatal guard cells, therefore leading to relatively few stomatal penetrations. For both wetness regimes, stomatal penetrations continued to increase with increased leaf wetness for at least 6 days after inoculation and there was a linear relationship between the number of stomatal penetrations and the number of resultant lesions. Infection efficiency was markedly increased when the spore load was reduced to 0.1 conidia per cm2 (about one spore per leaflet).  相似文献   

5.
为探明不同湿润持续时间及叶片温度与黄瓜霜霉病发生的关系,通过观察不同湿润条件下黄瓜霜霉病的初显症时间,计算逐日显症率及累积显症率,并利用热红外成像仪对显症后叶片温度进行连续监测。结果显示,不同湿润持续时间对黄瓜霜霉病的初显症时间、逐日显症率产生影响。叶片湿润持续4 h,黄瓜霜霉病在接种后7.00 d显症;叶片湿润持续12 h,黄瓜霜霉病初显症时间最早,仅为3.25 d。叶片湿润持续时间不同,黄瓜霜霉病初显症时的叶片温度存在显著差异。回归分析表明,初显症时间与最大温差呈显著正相关,与平均温度呈显著负相关。叶片湿润持续4、6 h的病斑出现高峰在显症后第2、3天,逐日显症率分别是37.50%和41.18%,比叶片湿润持续10、12 h的早。显症后期,湿润持续时间4、6、8、10、12 h的病斑累积显症率分别是87.94%、93.71%、90.25%、84.24%和88.36%,差异不显著。表明接种黄瓜霜霉菌Pseudoperonospora cubensis后叶片湿润持续时间越长,潜育期越短,叶片最大温差越小,叶片平均温度越大。  相似文献   

6.
ABSTRACT The effects of partial host resistance, temperature, leaf wetness duration, and leaf age on infection and lesion development of pecan scab were evaluated. Trees of cultivars Wichita (susceptible) and Sumner (resistant) were inoculated with conidia of Cladosporium caryigenum and placed in mist chambers set at 15, 25, or 35 degrees C. The trees were removed from the chambers after 3, 6, 12, 24, 36, or 48 h of leaf wetness and placed in a greenhouse to allow disease development. After 8 to 16 days, disease began to develop on both 'Wichita' and 'Sumner'. Logistic regression analysis showed that the probability of a leaf becoming infected was greatest for 'Wichita' it decreased with increasing leaf age and temperature and increased with increasing leaf wetness. Leaves on 'Wichita ' were susceptible to infection between 2 and 23 days after budbreak, while leaves on 'Sumner' were susceptible to infection from 2 to 18 days after budbreak. Infection frequency, lesion size, and conidia production decreased proportionately with increasing leaf age. The magnitude of this effect was greatest on 'Sumner'. Conidia production was positively correlated with lesion size, and both were positively correlated with infection frequency on both cultivars.  相似文献   

7.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

8.
Microclimatic variables were monitored in cucumber crops grown in polyethylene-covered, unheated greenhouses in Israel during the winter of 1987/88. The winter was characterized by a relatively large number of rainy days. The relative humidity (RH) in the greenhouses was high (>97%) during most of the day, resulting in long periods of dew persistence. Dew point temperature and duration of dew deposition were calculated for the plant canopy. Disease incidence was monitored in 2-m-high plants, both on senescing female flowers (‘fruits’) and on stems. Multiple linear correlations were calculated for gray mold incidence and duration of air temperature and RH at specific ranges, and of leaf wetness (LW). Disease was characterized by two stages, according to the rate of its development and the microclimatic conditions influencing it. In the first phase of the epidemic a high correlation was found between infected fruits and air temperature in the range of 11–25°C, and RH in the range of 97–100% or LW. In the second phase, disease incidence was better correlated with air temperature in the range of 11–16°C and RH above 85% (R2 = 0.681); there was no correlation between disease and LW at this stage. Development of stem infections was correlated with air temperature in the range of 11–16°C during the first phase of the epidemic. By contrast, the second phase was characterized by a close correlation between stem infections and RH in the range of 80–100% but also with air temperature in the range of 11–16°C, or with air temperature in the range of 11–25°C and RH 80–100%, and LW.  相似文献   

9.
Experiments in controlled environments were carried out to determine the effects of temperature and leaf wetness duration on infection of oilseed rape leaves by conidia of the light leaf spot pathogen, Pyrenopeziza brassicae . Visible spore pustules developed on leaves of cv. Bristol inoculated with P. brassicae conidia at temperatures from 4 to 20°C, but not at 24°C; spore pustules developed when the leaf wetness duration after inoculation was longer than or equal to approximately 6 h at 12–20°C, 10 h at 8°C, 16 h at 6°C or 24 h at 4°C. On leaves of cvs. Capricorn or Cobra, light leaf spot symptoms developed at 8 and 16°C when the leaf wetness duration after inoculation was greater than 3 or 24 h, respectively. The latent period (the time period from inoculation to first spore pustules) of P. brassicae on cv. Bristol was, on average, approximately 10 days at 16°C when leaf wetness duration was 24 h, and increased to approximately 12 days as temperature increased to 20°C and to 26 days as temperature decreased to 4°C. At 8°C, an increase in leaf wetness duration from 10 to 72 h decreased the latent period from approximately 25 to 16 days; at 6°C, an increase in leaf wetness duration from 16 to 72 h decreased the latent period from approximately 23 to 17 days. The numbers of conidia produced were greatest at 12–16°C, and decreased as temperature decreased to 8°C or increased to 20°C. At temperatures from 8 to 20°C, an increase in leaf wetness duration from 6 to 24 h increased the production of conidia. There were linear relationships between the number of conidia produced on a leaf and the proportion of the leaf area covered by 'lesions' (both log10-transformed) at different temperatures.  相似文献   

10.
M. W. SHAW 《Plant pathology》1986,35(3):294-309
Conidia of Pyrenophora teres germinated only in the presence of liquid water and at temperatures above 2°C. The speed with which germination occurred was inversely proportional to temperature measured from a base of 2°C, up to the maximum temperature tested of 21°C. Once conidia on leaves had been wetted, about 40% of all infections that would eventually occur were established within 100°C-hours. Subsequent lesion extension was rapid, with area doubling times of about 1 day between 10 and 20°C.
If conidia germinated, up to 80% formed successful infections on young, susceptible leaves. On older leaves fewer spores germinated and the proportion that then infected was smaller.
The latent period, defined as the time before which sporulation did not occur under any wetness conditions, ranged from about 25 days at 5°C to 11 days at 20°C under dry conditions. Under continuously wet conditions it was about 20% shorter at all temperatures. Its inverse had a curvilinear relation to temperature.
Spores were produced after one to several days of humidity above 95%. The precise period decreased with increasing temperature, but at 25°C spores never appeared. The drier a dead leaf was, the longer the pathogen in it look to produce spores.  相似文献   

11.
M. W. SHAW 《Plant pathology》1990,39(2):255-268
After inoculation of winter wheat cv. Longbow at a single time, lesions of M. graminicola were produced over a long interval starting 15–35 days after inoculation, dependent on temperature. There was no evidence that a single infection gave rise to more than one lesion. After the initial infection period at 100% relative humidity (r.h.), keeping leaves wet for c. 10 h per day did not shorten latent period on seedlings. Experiments in controlled-environment chambers demonstrated a minimum latent period at approximately 17°C Variation in the latent period of individual lesions was also minimum at this temperature. The latent period varied among the cultivars tested, cv. Longbow having the shortest, cv. Avalon having almost the longest. Field observations broadly confirmed the results of experiments in constant-environment chambers.  相似文献   

12.
Experiments were conducted on olive plants in controlled environments to determine the effect of conidial concentration, leaf age, temperature, continuous and interrupted leaf wetness periods, and relative humidity (RH) during the drier periods that interrupted wet periods, on olive leaf spot (OLS) severity. As inoculum concentration increased from 1·0 × 102 to 2·5 × 105 conidia mL?1, the severity of OLS increased at all five temperatures (5, 10, 15, 20 and 25°C). A simple polynomial model satisfactorily described the relationship between the inoculum concentration at the upper asymptote (maximum number of lesions) and temperature. The results showed that for the three leaf age groups tested (2–4, 6–8 and 10–12 weeks old) OLS severity decreased significantly (P < 0·001) with increasing leaf age at the time of inoculation. Overall, temperature also affected (P < 0·001) OLS severity, with the lesion numbers increasing gradually from 5°C to a maximum at 15°C, and then declining to a minimum at 25°C. When nine leaf wetness periods (0, 6, 12, 18, 24, 36, 48, 72 and 96 h) were tested at the same temperatures, the numbers of lesions increased with increasing leaf wetness period at all temperatures tested. The minimum leaf wetness periods for infection at 5, 10, 15, 20 and 25°C were 18, 12, 12, 12 and 24 h, respectively. The wet periods during early infection processes were interrupted with drying periods (0, 3, 6, 12, 18 and 24 h) at two levels of RH (70 and 100%). The length of drying period had a significant (P < 0·001) effect on disease severity, the effect depending on the RH during the interruption. High RH (100%) resulted in greater disease severity than low RH (70%). A polynomial equation with linear and quadratic terms of temperature, wetness and leaf age was developed to describe the effects of temperature, wetness and leaf age on OLS infection, which could be incorporated as a forecasting component of an integrated system for the control of OLS.  相似文献   

13.
Inoculum density, temperature, leaf age, and wetness duration were evaluated for their effects on the development of black streak (Itersonilia perplexans) on edible burdock (Arctium lappa L.) in a controlled environment. The effect of relative humidity (RH) on ballistospores production by I. perplexans was also evaluated. Symptoms of black streak on leaves increased in a linear fashion as the inoculum density of I. perplexans increased from 102 to 106 ballistospores/ml. Rugose symptoms on young leaves were observed at densities of ≥104 ballistospores/ml. Disease severity of I. perplexans in relation to leaf age followed a degradation curve when the leaves were inoculated with ballistospores. Disease severity was high in newly emerged leaves up to 5 days old, declined as leaf age increased to 29 days, and was zero when leaf age increased from 30 to 33 days. Disease development of edible burdock plants exposed to ballistospores of I. perplexans was evaluated at various combinations of temperature (10°, 15°, 20°, 25°C) and duration of leaf wetness (12, 24, 36, 48, and 72 h). Disease was most severe when plants were in contact with the ballistospore sources at 15° or 20°C. The least amount of disease occurred at 25°C regardless of wetness duration. Ballistospores required 24–36 h of continuous leaf wetness to cause visible symptoms by infection on edible burdock. Ballistospores production in infected lesions required at least 95.5% RH.  相似文献   

14.
15.
Powdery mildew is an important disease of rubber trees worldwide. To assess the effects of temperature and leaf age on conidial germination and disease development, conidia were inoculated onto rubber tree seedlings with leaves at three phenological stages (copper bronze, colour-changing, and light green) and then incubated at six constant temperatures (10, 15, 20, 25, 30, and 35°C). Leaf age did not affect conidial germination (p = .296) whilst temperature did (p < .0001), although conidia were able to germinate at all tested temperatures. The estimated optimal temperature for conidial germination was 23.2°C. Leaf age, temperature, and their interactions had significant effects on conidial infection and hypha number (p < .0001). At 10 and 35°C, more than 2 and 4 days were needed for infection to complete, respectively, compared to <2, 1, 0.5, and 0.5 days for 15, 20, 25, and 35°C, respectively. Sporulation and mildew symptoms were only observed on those inoculated leaves of all stages at 20 and 25°C, and at the copper bronze stage only at 15°C. The latent period on the copper bronze leaves at 15°C was longer (9 days) than at 20 and 25°C (4 days). The latent period at 20 and 25°C increased from 4 to 7 days as the leaf development stage increased from copper bronze to light green. Therefore, temperature affected germination and postgermination growth of rubber tree powdery mildew, whereas leaf age primarily affected postgermination growth of the pathogen.  相似文献   

16.
Black leaf mold (BLM), caused by Pseudocercospora fuligena is a serious threat to tomato production in the humid tropics. Accurate information about the incubation (IP) and latent period (LP) under various host susceptibility and weather favourability circumstances will help to formulate holistic approaches to manage this disease. In this study, effects of temperature, wetness duration, and leaf age on the monocyclic components (IP and LP) of BLM were studied from growth chamber (GC) and greenhouse (GH) experiments as well as detached leaf assays in growth cabins. Linear interpolation and inflection point (of logistic regression model) methods were used to determine IP and LP. These two methods were highly correlated in GC (r 2?=?0.89; P?<?0.0001) and GH experiments (r 2?=?0.90; P?<?0.0001) except when the epidemics were not asymptotic. Thus, IP and LP were estimated according to inflection point method. There was a delay of at least 5 days of IP and LP when plants were left in non-humid open environment than when exposed to wetness durations of 1, 2 or 3 days after inoculation. In general, IP and LP became shorter as the temperature increased from 20–24 and then to 28 °C. In growth chambers, there was more disease and consequently shorter IP and LP on young and unfolded tomato leaves that were 1-, 3-, or 5-week old at the time of inoculation than 7-week old leaves. In the greenhouse, there was about 50 % more disease incidence and sporulation on 1-week than 3-week old leaves. The shortest IP (8–11 days) and LP (12–13 days) were recorded from two out of three GH experiments on 1-week old leaves at an ambient mean temperature of 28.5 °C. This study implicated that fresh market tomatoes planted during warm temperatures in 50-mesh greenhouses and exposed to extended periods of wetness are highly prone to BLM infection at their young stages of growth.  相似文献   

17.
The effects of temperature, relative humidity (RH), leaf wetness and leaf age on conidium germination were investigated for Spilocaea oleagina, the causal organism of olive leaf spot. Detached leaves of five ages (2, 4, 6, 8 and 10 weeks after emergence), six different temperatures (5, 10, 15, 20, 25 and 30°C), eight wetness periods (0, 6, 9, 12, 18, 24, 36 and 48 h), and three RH levels (60, 80 and 100%) were tested. Results showed that percentage germination decreased linearly in proportion to leaf age (P < 0.001), being 58% at 2 weeks and 35% at 10 weeks. A polynomial equation with linear term of leaf age was developed to describe the effect of leaf age on conidium germination. Temperature significantly (P < 0.001) affected frequencies of conidium germination on wet leaves held at 100% RH, with the effective range being 5 to 25°C. The percent germination was 16.1, 23.9, 38.8, 47.8 and 35.5% germination at 5, 10, 15, 20 and 25°C, respectively, after 24 h. Polynomial models adequately described the frequencies of conidium germination at these conditions over the wetness periods. The rate of germ tube elongation followed a similar trend, except that the optimum was 15°C, with final mean lengths of 175, 228, 248, 215 and 135 μm at 5, 10, 15, 20 and 25°C, respectively after 168 h. Polynomial models satisfactorily described the relationships between temperature and germ tube elongation. Formation of appressoria, when found, occurred 6 h after the first signs of germination. The percentage of germlings with appressoria increased with increasing temperature to a maximum of 43% at 15°C, with no appressoria formed at 25°C after 48 h of incubation. Increasing wetness duration caused increasing numbers of conidia to germinate at all temperatures tested (5–25°C). The minimum leaf wetness periods required for germination at 5, 10, 15, 20 and 25°C were 24, 12, 9, 9 and 12 h, respectively. At 20°C, a shorter wetness period (6 h) was sufficient if germinating conidia were then placed in 100% RH, but not at 80 or 60%. However, no conidia germinated without free water even after 48 h of incubation at 20°C and 100% RH. The models developed in this study should be validated under field conditions. They could be developed into a forecasting component of an integrated system for the control of olive leaf spot.  相似文献   

18.
Asiatic citrus canker, caused by Xanthomonas smithii ssp. citri , formerly X. axonopodis pv. citri , is one of the most serious phytosanitary problems in Brazilian citrus crops. Experiments were conducted under controlled conditions to assess the influence of temperature and leaf wetness duration on infection and subsequent symptom development of citrus canker in sweet orange cvs Hamlin, Natal, Pera and Valencia. The quantified variables were incubation period, disease incidence, disease severity, mean lesion density and mean lesion size at temperatures of 12, 15, 20, 25, 30, 35, 40 and 42°C, and leaf wetness durations of 0, 4, 8, 12, 16, 20 and 24 h. Symptoms did not develop at 42°C. A generalized beta function showed a good fit to the temperature data, severity being highest in the range 30–35°C. The relationship between citrus canker severity and leaf wetness duration was explained by a monomolecular model, with the greatest severity occurring at 24 h of leaf wetness, with 4 h of wetness being the minimum duration sufficient to cause 100% incidence at optimal temperatures of 25–35°C. Mean lesion density behaved similarly to disease severity in relation to temperature variation and leaf wetness duration. A combined monomolecular-beta generalized model fitted disease severity, mean lesion density or lesion size as a function of both temperature and duration of leaf wetness. The estimated minimum and maximum temperatures for the occurrence of disease were 12°C and 40°C, respectively.  相似文献   

19.
Experiments were conducted to determine the effects of temperature, relative humidity (RH) and duration of wetness period on in vitro germination of conidia and infection of detached pear leaves by Venturia nashicola , the causal agent of pear scab. Conidia germinated only in near-saturation humidity (RH > 97%). The final percentage germination (24 h after inoculation) at 100% RH without free water was less than half that in free water. Conidia germinated over the range of temperatures tested (5–30°C); the optimum temperature for germination was ≈21°C. Changes in percentage germination of conidia over time were fitted by logistic models at each individual temperature. Polynomial models satisfactorily described the relationships between two (rate and time to 50% of maximum germination) of the three logistic model parameters and temperature. The minimum length of the wetness period for successful infection of detached pear leaves by conidia was observed at several temperatures. The shortest length of wetness period required for infection was 7 h at 22°C. Two polynomial models fitted well the relationship between the minimum wetness duration required for infection, and temperature.  相似文献   

20.
In Ehime Prefecture, Japan, lettuce leaf spot (Septoria lactucae) caused huge losses in marketable lettuce yields. To explore potential measures to control disease outbreaks, the effects of inoculum density, leaf wetness duration and nitrate concentration on the development of leaf spot on lettuce (Lactuca sativa) were evaluated. Conidia were collected from diseased plants in an infested field by single-spore isolation and were used to inoculate potted lettuce plants with different conidial concentrations. Lesions developed on inoculated lettuce plants at inoculum concentrations from 100 to 106 conidia/ml. The disease was more severe when the inoculum exceeded 102 conidia/ml, and severity increased with increasing concentrations. Assessment of the relationship between disease development and the duration of postinoculation leaf wetness revealed that symptoms appeared when the inoculated plants remained wet for 12 h or longer. The number of lesions and total nitrogen content in the lettuce leaves both increased when nitrate was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号