首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

Despite continued forest cover losses in many parts of the world, Atlantic Forest, one of the largest of the Americas, is increasing in some locations. Economic factors are suggested as causes of forest gain, while enforcement has reduced deforestation.

Objectives

We examine three aspects of this issue: the relative importance of biophysical versus anthropogenic factors in driving forest dynamics; role of forest mean patch age influencing areas targeted for losses; and what future forest mean patch age mosaic we can expect (more forest cover and full forest maturity?).

Methods

Three land cover maps from 1990, 2000 and 2010, were used in the study. We selected six biophysical and six anthropogenic spatial determinants to analyze by means of weights of evidence, using Dinamica software.

Results

Results show that forest regrowth is influenced by multiple factors, working in synergy. Biophysical variables are related to forest gain while anthropogenic are associated with loss. Clear patterns of regrowth on pasture and sugarcane plantations occurred, especially near rivers and forest patches, on steeper slopes and with sufficient rainfall. Forest loss has targeted both older and newer forests. Future projections reveal forest gain in a slow pace, followed by specific ecosystem service losses, due to continuous trends of older mature forest loss.

Conclusions

Regrowth is linked to land abandonment, and to neighboring environmental conditions. It is important to question which mechanisms will guarantee and potentiate new regrowth, thus contributing to landscape restoration and reestablishment of ecosystem services in the Atlantic Forest.
  相似文献   

2.
The matrix of altered habitats that surrounds remnants in human dominated landscapes has been considered homogeneous and inhospitable. Recent studies, however, have shown the crucial role of the matrix in maintaining diversity in fragmented landscapes, acting as a mosaic of units with varying permeability to different species. Inclusion of matrix quality parameters is especially urgent in managing fragmented landscapes in the tropics where agriculture frontiers are still expanding. Using standardized surveys in 23 sites in an Atlantic forest landscape, we evaluated matrix use by small mammals, the most diverse ecological group of mammals in the Neotropics, and tested the hypothesis that endemic species are the most affected by the conversion of original forest into anthropogenic habitats. By comparing species distribution among forest remnants and the predominant adjacent habitats (native vegetation in initial stages of regeneration, eucalyptus plantations, areas of agriculture and rural areas with buildings), we found a strong dissimilarity in small mammal assemblages between native vegetation (including initial stages) and anthropogenic habitats, with only two species being able to use all habitats. Endemic small mammals tended to occupy native vegetation, whereas invading species from other countries or open biomes tended to occupy areas of non-native vegetation. Our results highlight that future destruction of native vegetation will favor invading or generalist species which could dominate highly disturbed landscapes, and that some matrix habitats, such as regenerating native vegetation, should be managed to increase connectivity among populations of endemic species.  相似文献   

3.
Studies dealing with community similarity are necessary to understand large scale ecological processes causing biodiversity loss and to improve landscape and regional planning. Here, we study landscape variables influencing patterns of community similarity in fragmented and continuous forest landscapes in the Atlantic forest of South America, isolating the effects of forest loss, fragmentation and patterns of land use. Using a grid design, we surveyed birds in 41 square cells of 100 km2 using the point count method. We used multivariate, regression analyses and lagged predictor autoregressive models to examine the relative influence of landscape variables on community similarity. Forest cover was the primary variable explaining patterns of bird community similarity. Similarity showed a sudden decline between 20 and 40% of forest cover. Patterns of land use had a second order effect; native bird communities were less affected by forest loss in landscapes dominated by tree plantations (the most suitable habitat for native species) than in landscapes dominated by annual crops or cattle pastures. The effects of fragmentation were inconclusive. The trade-off between local extinctions and the invasion of extra-regional species using recently created habitats is probably the mechanism generating the observed patterns of community similarity. Limiting forest loss to 30–40% of the landscape cover and improving the suitability of human-modified habitats will contribute to maintain the structure and composition of the native forest bird community in the Atlantic forest.  相似文献   

4.
Landscape Ecology - Despite the importance of secondary forests for the maintenance of biodiversity, the impact of pioneer trees on habitat loss and fragmentation is poorly understood. We analyzed...  相似文献   

5.
Human settlement is a formidable agent of change affecting fundamental ecological processes. Decisions governing these land-use changes occur almost exclusively at the local level and, as a result, they are made at many different locations and times. Consequently, it is difficult for ecologists to provide needed scientific support for these choices. We built an information system designed to support conservation decisions at local scales by offering data over the Internet. We collaborated with local stakeholders (e.g., developers, planners, politicians, land owners, environmental activists) to design the system. This collaboration produced several generalizations about effective design of information systems to support conservation. The most important of these is the idea that ecological data and analysis must be understood by those who will be affected by the decisions. Also, planning for conservation is a process that uses scientific data, but that ultimately depends on the expression of human values. A major challenge landscape ecologists face is to extend general landscape principles to provide specific scientific information needed for local land-use planning.  相似文献   

6.
Changes in the landscape from 1946 to 1999 were studied according to changes in the land uses, boundaries and mosaics therein. The abundances of the different categories of these three landscape elements were calculated using land use maps. Their frequency profiles were compared based on their richness, evenness and diversity. Richness of land uses does not noticeably change. However, these slight changes are spatially perceptible in the landscape when changes in the boundaries and mosaics are considered. For the three landscape elements the least diverse landscapes are obtained in the initial year. The highest landscape diversity is reached, however, in the intermediate years when boundaries or mosaics are considered, whereas the highest value based on land uses occurs in the final period studied. Considering that land uses, boundaries and mosaics provide different information on landscape characteristics and qualities, conditional entropy analyses were conducted in order to ascertain which of the types of landscape elements is most related to landscape change. Boundaries are the element most related to landscape change. Mosaics, however, are the element that best describe each of the years because they integrate the information on land uses and boundaries. From an ecological and management point of view, the three elements should be considered as opposed to just land uses. They compliment each other in the information provided by each one in relation to changes occurring and the effects thereof on landscape structure and functioning.  相似文献   

7.
We present a framework that uses both sources and sinks as elements in the construction of a landscape matrix. We propose that the matrix be conceived as a collection of temporary habitats, some of which are sources, others of which are sinks, that form a landscape mosaic. The key element in this framing is that the sources are ephemeral and the sinks are propagating. A mean field approach is used to modify the classic metapopulation model, taking this new framework into account. Additionally a spatially explicit approach reveals different scaling rules for the percolation probability and the propagating probability.  相似文献   

8.
Characterizing the complexity of landscape boundaries by remote sensing   总被引:9,自引:0,他引:9  
This paper presents a method for characterizing the complexity of landscape boundaries by remote sensing. This characterization is supported by a new boundary typology, that takes into account points where three or more landcovers converge (i.e., convergency points or coverts). Landscape boundary richness and diversity indices were proposed and calculated over 19 landscapes in South-East Brazil. Results showed that landscape boundaries, especially convergency points, provided an enrichment in landscape pattern analysis. Landcover boundary diversities were significantly related to landcover shape: elongated riparian units had the highest values for boundary diversity and coverts proportion indices. On the other hand, landscape analysis showed that indices of shape, richness, diversity and coverts proportion provided an additional evaluation of landcover spatial distribution within the landscape.  相似文献   

9.
Bu  Hongliang  McShea  William J.  Wang  Dajun  Wang  Fang  Chen  Youping  Gu  Xiaodong  Yu  Lin  Jiang  Shiwei  Zhang  Fahui  Li  Sheng 《Landscape Ecology》2021,36(9):2549-2564
Context

The downlisting of giant panda (Ailuropoda melanoleuca) from Endangered to Vulnerable in IUCN Red List confirms the effectiveness of current conservation practices. However, future survival of giant panda is still in jeopardy due to habitat fragmentation and climate change. Maintaining movement corridors between habitat patches in the newly established Giant Panda National Park (GPNP) is the key for the long-term sustainability of the species.

Objectives

We evaluated the impacts of conversion from natural forest to plantation on giant panda habitat connectivity, which is permitted within collective forests and encouraged by the policies for the economic benefits of local communities. We modeled distribution of giant panda habitat in Minshan Mountains which harbors its largest population, and delineated movement corridors between core habitat patches under management scenarios of different forest conversion proportions.

Methods

We applied an integrated species distribution model based on inhomogeneous Poisson point process to combine presence-only data and site occupancy data, and least-cost models to identify potential movement corridors between core habitat patches.

Results

We found that current distribution of plantation has not damaged connectivity between core habitat patches of giant panda. However, it could be severely degraded if mass conversion occurred. Since the GPNP incorporates all the core habitats identified from our model, controlling natural forest conversion inside GPNP would maintain the movement corridors for giant panda.

Conclusions

We recommend no expansion of plantations inside the GPNP, and improving collective forest management for expansion of ecological forest in adjoining habitat patches.

  相似文献   

10.

Context

Broad-scale land conservation and management often involve applying multiple strategies in a single landscape. However, the potential outcomes of such arrangements remain difficult to evaluate given the interactions of ecosystem dynamics, resource extraction, and natural disturbances. The costs and potential risks of implementing these strategies make robust evaluation critical.

Objectives

We used collaborative scenario modeling to compare the potential outcomes of alternative management strategies in the Two Hearted River watershed in Michigan’s Upper Peninsula to answer key questions: Which management strategies best achieve conservation goals of maintaining landscape spatial heterogeneity and conserving mature forests and wetlands? And how does an increase in wildfire and windthrow disturbances influence these outcomes?

Methods

Scenarios were modeled using the VDDT/TELSA state-and-transition modeling suite, and resulting land cover maps were analyzed using ArcGIS, FRAGSTATS, and R statistical software.

Results

Results indicate that blending conservation strategies, such as single-ownership forest reserves and working forest conservation easements in targeted areas of the landscape, may better achieve these goals than applying a single strategy across the same area. However, strategies that best achieve these conservation goals may increase the sensitivity of the landscape to changes in wildfire and windthrow disturbance regimes.

Conclusions

These results inform decision-making about which conservation strategy or combination of strategies to apply in specific locations on the landscape to achieve optimum conservation outcomes, how to best utilize scarce financial resources, and how to reduce the financial and ecological risks associated with the application of innovative strategies in an uncertain future.
  相似文献   

11.
Management may influence abiotic environments differently across time and spatial scale, greatly influencing perceptions of fragmentation of the landscape. It is vital to consider a priori the spatial scales that are most relevant to an investigation, and to reflect on the influence that scale may have on conclusions. While the importance of scale in understanding ecological patterns and processes has been widely recognized, few researchers have investigated how the relationships between pattern and process change across spatial and temporal scales. We used wavelet analysis to examine the multiscale structure of surface and soil temperature, measured every 5 m across a 3820 m transect within a national forest in northern Wisconsin. Temperature functioned as an indicator – or end product – of processes associated with energy budget dynamics, such as radiative inputs, evapotranspiration and convective losses across the landscape. We hoped to determine whether functional relationships between landscape structure and temperature could be generalized, by examining patterns and relationships at multiple spatial scales and time periods during the day. The pattern of temperature varied between surface and soil temperature and among daily time periods. Wavelet variances indicated that no single scale dominated the pattern in temperature at any time, though values were highest at finest scales and at midday. Using general linear models, we explained 38% to 60% of the variation in temperature along the transect. Broad categorical variables describing the vegetation patch in which a point was located and the closest vegetation patch of a different type (landscape context) were important in models of both surface and soil temperature across time periods. Variables associated with slope and microtopography were more commonly incorporated into models explaining variation in soil temperature, whereas variables associated with vegetation or ground cover explained more variation in surface temperature. We examined correlations between wavelet transforms of temperature and vegetation (i.e., structural) pattern to determine whether these associations occurred at predictable scales or were consistent across time. Correlations between transforms characteristically had two peaks; one at finer scales of 100 to 150 m and one at broader scales of >300 m. These scales differed among times of day and between surface and soil temperatures. Our results indicate that temperature structure is distinct from vegetation structure and is spatially and temporally dynamic. There did not appear to be any single scale at which it was more relevant to study temperature or this pattern-process relationship, although the strongest relationships between vegetation structure and temperature occurred within a predictable range of scales. Forest managers and conservation biologists must recognize the dynamic relationship between temperature and structure across landscapes and incorporate the landscape elements created by temperature-structure interactions into management decisions.  相似文献   

12.
Large wood (LW) is critical to the structure and function of streams and forests are the main LW source to stream channels. To assess the influence of forest cover changes at different spatial scales on in-stream LW quantity, we selected eighteen catchments (2nd–4th order) in Southeastern Brazil with forests at different levels of alterations. In each catchment we quantified the pattern of forest cover (% cover and relative catchment position), the physical characteristics of catchments (elevation and slope), the characteristics of channels (wetted channel width and depth), the abundance and volume of in-stream LW, and the frequency of LW pools. We used simple and multiple linear regression to assess the response of LW variables to landscape and stream reach variables. Most of the LW was relatively small; 72 % had a diameter <20 cm, and 66 % had a length <5 m. Although percent forest cover at reach scale had substantial support to explain LW variables, the best predictors of LW variables were forest cover at broader scales (LW abundance and LW pool frequency were best predicted by forest at intermediate distance at the catchment scale and LW volume was best predicted by forest cover at the drainage network scale), suggesting that downstream transport is an important process in addition to local processes in our study area. These findings have important management implications because although low forested reaches receive less LW from local forests (or no LW in the case of deforested stream reaches), they are receiving LW from upstream forested reaches. However, the material is generally small, unstable and likely to be easily flushed. This suggests that not only should riparian forest conservation encompass the full drainage network, but forests should also be allowed to regenerate to later successional stages to provide larger, higher quality LW for natural structuring of streams.  相似文献   

13.
Forest roads and landscape structure in the southern Rocky Mountains   总被引:18,自引:0,他引:18  
Roadless areas on public lands may serve as environmental baselines against which human-caused impacts on landscape structure can be measured. We examined landscape structure across a gradient of road densities, from no roads to heavily roaded, and across several spatial scales. Our study area was comprised of 46,000 ha on the Roosevelt National Forest in north-central Colorado. When forest stands were delineated on the basis of seral stage and covertype, no relationship was evident between average stand size and road density. Topography appeared to exert a greater influence on average stand size than did road density. There was a significant positive correlation between the fractal dimension of forest stands and road density across all scales. Early-seral stands existed in greater proportions adjacent to roads, suggesting that the effects of roads on landscape structure are somewhat localized. We also looked at changes in landscape structure when stand boundaries were delineated by roads in addition to covertype and seral stage. Overall, there was a large increase in small stands with simple shapes, concurrent with a decline in the number of stands > 100 ha. We conclude that attempts to quantify the departure from naturalness in roaded areas requires an understanding of the factors controlling the structure of unroaded landscapes, particularly where the influence of topography is great. Because roads in forested landscapes influence a variety of biotic and abiotic processes, we suggest that roads should be considered as an inherent component of landscape structure. Furthermore, plans involving both the routing of new roads and the closure of existing ones should be designed so as to optimize the structure of landscape mosaics, given a set of conservation goals.  相似文献   

14.
Human activities and natural disturbances create spatial heterogeneity within forested landscapes, leading to both sharp and gradual boundaries in vegetation and abiotic attributes, such as rocks. Those boundaries may affect the detailed delineation of avian territories (independently of their general location), but their role is largely unknown. We tested, using a spatial analysis approach, whether spatial heterogeneity of vegetation and abiotic attributes were associated with territory boundaries of ten black-throated blue warblers (Dendroica caerulescens) and 14 ovenbirds (Seiurus aurocapillus). The study was conducted during summer 1999 in a mature deciduous forest near Québec City, Canada. Singing males were mapped from repeated surveys at 756 points, 25 m apart, on a 49 ha grid. Spatial heterogeneity was obtained from 27 attributes measured at each point. Boundaries of bird territories, vegetation, and abiotic attributes were delineated using the lattice-wombling boundary detection algorithm. The spatial association between territory and microhabitat boundaries was computed using the spatial overlap statistics. There was significant spatial overlap between territory boundaries and those of 15 and 17 attributes for black-throated blue warbler and ovenbird, respectively. The attributes most strongly associated with territory boundaries were conifer seedling cover, grass and total vegetation cover between 0-2 m high for black-throated blue warbler and fern cover, vegetation-covered rocks and shrub diversity for ovenbird. Complementary to this, a redundancy analysis (RDA) was used to compare attributes associated with the general occurrence of males to those whose boundaries were associated specifically with territory boundaries. Most attributes whose boundaries were associated with territory boundaries did not correspond to resource attributes, i.e., those where birds were detected most frequently. We conclude that soft boundaries associated with spatial heterogeneity may help shape forest bird territories by providing landmarks not necessarily related to resources used within territories.  相似文献   

15.
Forest conservation and land development in Puerto Rico   总被引:4,自引:1,他引:3  
Helmer  E.H. 《Landscape Ecology》2004,19(1):29-40
In the Caribbean island of Puerto Rico, rapid land-use changes over the past century have included recent land-cover conversion to urban/built-up lands. Observations of this land development adjacent to reserves or replacing dense forest call into question how the changes relate to forests or reserved lands. Using existing maps, this study first summarizes island-wide land-cover change between 1977-78 and 1991-92. Then, using binomial logit modeling, it seeks evidence that simple forest cover attributes, reserve locations, or existing land cover influence land development locations. Finally, this study quantifies land development, reserve protection and forest cover by ecological zone. Results indicate that 1) pasture is more likely to undergo land development than shrubland plus forest with low canopy density, 2) forest condition and conservation status appear unimportant in that development locations neither distinguish between classes of forest canopy development nor relate to forest patch size or reserve proximity, and 3) most land development occurs in the least-protected ecological zones. Outside the boundaries of strictly protected forest and other reserves, accessibility, proximity to existing urban areas, and perhaps desirable natural settings, serve to increase land development. Over the coming century, opportunities to address ecological zone gaps in the islands forest reserve system could be lost more rapidly in lowland ecological zones, which are relatively unprotected.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

16.
17.
Six species of resident birds were censused in patches of deciduous forest within a coniferous forest landscape in south central Sweden. Here, the forests have been subjected to active forestry for a long time, but with recently increased intensity. Although the forest cover is more or less continuous in this landscape, mature deciduous forest is now a rare element compared with the untouched forest.All censused patches were similar with regards to size, proportion and amount of deciduous trees, but were either isolated in the coniferous forest (isolated patches) or near to other deciduous patches (aggregated patches). We concentrated on six species of resident birds, with moderate area requirements, that are tied to deciduous forest and whose ecology is well-known. The Nuthatch and the Marsh tit, which both show strict year-round territoriality and have a restricted dispersal phase, were significantly more likely to be found in aggregated than in isolated patches. No effect was found for the Great tit and the Blue tit, which are less territorial outside the breeding season and have a longer dispersal phase. Moreover, the Great tit is less specialized on deciduous forest than the other species. Also, the Long-tailed tit was negatively affected by isolation, which may be due to restricted dispersal and to larger area requirements of this flock-territorial species. The Hazel grouse, finally, was not affected, but this larger bird probably uses the forest in a different way from the smaller species.Our study clearly shows that fragmentation of one type of forest (deciduous) within another can have serious detrimental effects on forest-living species and raises important issues for forest management practices and conservation within a forest landscape.  相似文献   

18.
Research demonstrating the biophysical benefits of urban trees are often used to justify investments in urban forestry. Far less emphasis, however, is placed on the non-bio-physical benefits such as improvements in public health. Indeed, the public-health benefits of trees may be significantly larger than the biophysical benefits, and, therefore, failure to account for the public-health benefits of trees may lead to underinvestment in urban forestry. In addition, the distribution of trees that maximizes bio-physical benefits may not maximize public-health benefits.  相似文献   

19.
20.
This study investigates the relationship between soil sealing and landscape conservation in four Mediterranean regions (Athens, Barcelona, Lisbon, Rome) characterized by different patterns of urban expansion. Per-capita sealed land, a landscape conservation index and selected territorial variables were considered into a multivariate exploratory framework aimed at assessing the correlation between land-use efficiency (based on the degree of soil sealing per-capita) and the quality of suburban landscape. A population density gradient with intensity of sealed land decreasing with the distance from the central city was observed in compact urban regions such as Athens and Barcelona. A mixed urban gradient was observed in Rome and Lisbon. In all the considered cities the spatial distribution of per-capita sealed land was not correlated with the urban gradient indicating that land consumption follows place-specific patterns irrespective of landscape quality. These findings suggest that urban containment and landscape conservation are policy targets requiring environmental measures irrespective of the prevailing morphology of the urban region (compact vs dispersed). In this context, green infrastructure planning is a promising tool for landscape conservation and the containment of soil sealing within fragile and dynamic contexts such as the wildland-urban interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号