首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a litterbag study in a tropical montane rainforest in Ecuador we assessed the impact of leaf litter species identity and richness on decomposition. We incubated leaf litter of six native tree species in monocultures and all possible two and four species combinations and analysed mass loss over a period of 24 months. Mass loss in monocultures averaged 30.7% after 6 month and differed significantly between species with variations being closely related to initial concentrations of lignin, Mg and P. At later harvests mass loss in monocultures averaged 54.5% but did not vary among leaf litter species and, unexpectedly, did not increase between 12 and 24 months suggesting that litter converged towards an extremely poor common quality retarding decomposition. After 6 months mass loss of leaf litter species was significantly faster in mixtures than in monocultures, resulting in synergistic non-additive mixture effects on decomposition, whereas at later harvests mass loss of component litter species was more variable and leaf litter mixture effects differed with species richness. Mass loss in the two species mixtures did not deviate from those predicted from monocultures, while we found antagonistic non-additive mixture effects in the four species mixtures. This suggests that litter species shared a poor common quality but different chemistry resulting in negative interactions in chemically diverse litter mixtures at later stages of decomposition. Overall, the results suggest that interspecific variations in diversity and composition of structural and secondary litter compounds rather than concentrations of individual litter compounds per se, control long term leaf litter decomposition in tropical montane rainforests. Plant species diversity thus appears to act as a major driver for decomposition processes in tropical montane rainforest ecosystems, highlighting the need for increasing plant conservation efforts to protect ecosystem functioning of this threatened biodiversity hotspot.  相似文献   

2.
The effect of plant species diversity and the C/N ratio of litter on soil processes were analysed in mesocosms in a three year field experiment. Plots 0.5 × 0.5 m with a depth of 15 cm containing sand mixed with loam were used to compare five natural and one artificial litter type (polypropylene string). Natural litters were either monospecific (I: Dactylis glomerata; II: Festuca rubra and III: Trifolium pratense) or were species mixtures (IV: mixture of three species I, II and III; V: mixture of twelve species, IV and nine other meadow plants). Differences among treatments in the litter decomposition rate, humic acid content and nematode density depended on the litter quality (C:N ratio) in most cases. By contrast, most of the differences among treatments found in the substratum below the litter cover resulted from litter diversity. The largest increase of carbon and nitrogen amount during growing season was found under litter mixtures (IV, V) and the highest fulvic acid content under the most diverse litter (V). Similarly, the production of algae in the substratum also significantly increased with litter diversity. Higher taxonomic diversity of Nematoda and Collembola and the most mature community of nematodes were observed under the most complex litter. Epigeic macrofauna, both dwelling in and penetrating the litter, did not differ significantly between experimental treatments. However, the highest share of predators was found in the treatment with the richest plant species diversity. In general, the results suggest that the decomposition of diverse plant litter enhances humus acid accumulation in soils. It is likely that algae participate in the process of humus formation.  相似文献   

3.
Soil microarthropods are considered to be among the strongest determinants of plant litter decomposition in warm, humid sites. Little is known, however, about the regulation of plant litter decomposition dynamics along an elevation gradient in such sites. Our study examined the contributions of soil microarthropods to leaf litter decomposition of a single substrate (Castanopsis carlesii) along an elevation gradient across four types of zonal vegetations in southeastern China: evergreen broadleaf forest (EVB): coniferous forest (COF): dwarf forest (DWF): and alpine meadow (ALM) during April 2007 to March 2008. Leaf litter decomposition of C. carlesii was significantly accelerated by the presence of fauna in all four sites. After 360 days in the field, mass loss rates with the full decomposer assemblage and in the reduction of microarthropods were 62.9% and 41.2% in EVB, 48.1% and 30.6% in COF, 36.4% and 27.8% in DWF, 30.3% and 23.7% in ALM, respectively. The percentage of total decomposition due to the presence of soil fauna was 37% in EVB, 25% in COF, 12% in DWF, and 8% in ALM, thus showing strong systematic variation along the elevational gradient. The mass losses in control plots at the four sites were significantly correlated with the abundances of total Acari, Collembolans, and Mesostigmata mites. Although the proportion of Oribatid mites at EVB was not the highest among the four sites, there were elevated proportions of Mesostigmatid and Prostigmata mites, many of which were microbe-consuming species and induce an indirect influence on litter decomposition. Moreover, Shannon Index (F = 2.455, p = 0.093) and Group Number (F = 5.830, p = 0.005) both decreased along the elevation gradients. Mass losses were also found to be distinctively related to H′ (r2 = 0.984, p = 0.016), and GN (r2 = 0.952, p = 0.048) across the four sites. Our results suggest that the faunal contribution to plant litter decomposition varies markedly across environmental gradients that differ in litter faunal diversity.  相似文献   

4.
Plants can affect soil organic matter decomposition and mineralization through litter inputs, but also more directly through root-microbial interactions (rhizosphere effects). Depending on resource availability and plant species identity, these rhizosphere effects can be positive or negative. To date, studies of rhizosphere effects have been limited to plant species grown individually. It is unclear how belowground resources and inter-specific interactions among plants may influence rhizosphere effects on soil C decomposition and plant N uptake. In this study, we tested the simple and interactive effects of plant diversity and water availability on rhizosphere-mediated soil C decomposition and plant N uptake. The study was conducted in the greenhouse with five semi-arid grassland species (monocultures and mixtures of all five species) and two water levels (15 and 20% gravimetric soil moisture content). We hypothesized that microbial decomposition and N release would be less in the low compared to high water treatment and less in mixtures compared to monocultures. Rhizosphere effects on soil C decomposition were both positive and negative among the five species when grown in monoculture, although negative effects prevailed by the end of the experiment. When grown in mixture, rhizosphere effects reduced soil C decomposition and plant N uptake compared to monocultures, but only at the low-water level. Our results suggest that when water availability is low, plant species complementarity and selection effects on water and N use can decrease soil C decomposition through rhizosphere effects. Although complementarity and selection effects can increase plant N uptake efficiency, plant N uptake in the mixtures was still lower than expected, most likely because rhizosphere effects reduced N supply in the mixtures more than in the monocultures. Our results indicate that rhizosphere effects on C and N cycling depend on water availability and inter-specific plant interactions. Negative rhizosphere effects on soil C decomposition and N supply in mixtures relative to monocultures of the component species could ultimately increase soil C storage and possibly influence how plant communities in semi-arid grasslands respond to global climate change.  相似文献   

5.
The dynamics of leaf litter decomposition of Quercus ilex (L.) were investigated over a 2 year period by determining the activities and isoenzyme distribution of laccases and peroxidases. The analysis of isoenzymes was performed by isoelectric focusing on high stability pH gradients with high resolving power. The preparation of zymograms was carried out using the leaf litter extract without previous concentration. During litter decomposition, laccase and peroxidase activities changed as well as the type and number of enzyme isoforms. The activities of both enzymes were low (≤0.017 and ≤0.031 mmol o-tolidine oxidized h−1 g−1 d.w. for laccase and peroxidase, respectively) in first year and increased in October-January of the second year of litter decay. The highest activities measured after 15-18 months of litter exposure (0.37±0.03 and 0.19±0.02 mmol o-tolidine oxidized h−1 g−1 d.w. for laccase and peroxidase, respectively), showed that litter chemical composition affected the growth of ligninolytic microbial community. The activation energy for laccase and peroxidase reactions also changed during decomposition: the highest values (55±6 kJ mol−1 for laccase and 60±6 kJ mol−1 for peroxidase) occurred in autumn-winter, even if spatial changes were evidenced. Some enzyme isoforms (pI=5.3 and 5.5 for laccase and pI=5.0 and 5.1 for peroxidase, respectively), contributed more than others to the overall laccase and peroxidase activity, suggesting that some ligninolytic species bloomed in particular seasons of the year, even if other species with similar functional activities colonized the litter.  相似文献   

6.
Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic matter decomposition via changes in litter species diversity and composition, and via alteration of abiotic and/or biotic attributes of the soil (soil legacy effect). Previous studies examined the two effects on decomposition rates separately, and do therefore not elucidate the relative importance of the two effects, and their potential interaction. Here we separated the effects of litter mixing and litter identity from the soil legacy effect by conducting a factorial laboratory experiment where two fresh single root litters and their mixture were mixed with soils previously cultivated with single plant species or mixtures of two or four species. We found no evidence for litter-mixing effects. In contrast, root litter-induced CO2 production was greater in soils from high diversity plots than in soils from monocultures, regardless of the type of root litter added. Soil microbial PLFA biomass and composition at the onset of the experiment was unaffected by plant species richness, whereas soil potential nitrogen (N) mineralization rate increased with plant species richness. Our results indicate that the soil legacy effect may be explained by changes in soil N availability. There was no effect of plant species richness on decomposition of a recalcitrant substrate (compost). This suggests that the soil legacy effect predominantly acted on the decomposition of labile organic matter. We thus demonstrated that plant species richness enhances root litter-induced soil respiration via a soil legacy effect but not via a litter-mixing effect. This implies that the positive impacts of species richness on soil C sequestration may be weakened by accelerated organic matter decomposition.  相似文献   

7.
Although there has been much recent interest in the effect of litter mixing on decomposition processes, much remains unknown about how litter mixing and diversity affects the abundance and diversity of decomposer organisms. We conducted a litter mixing experiment using litterbags in a New Zealand rainforest, in which treatments consisted of litter monocultures of each of 8 forest canopy and understory plant species, as well as mixtures of 2, 4 and 8 species. We found litter mixing to have little effect on net decomposition rates after either 279 or 658 days, and for each species decomposition rates in mixture treatments were the same as in monoculture. Litter species identity had important effects on litter microfauna, mesofauna and macrofauna, with different litter types promoting different subsets of the fauna. Litter mixing had few effects on densities of mesofauna and macrofauna, but did have some important effects on components of the microfauna, notably microbe-feeding and predatory nematodes. At day 279, litter mixing also consistently reduced the ratio of bacterial-feeding to microbe-feeding (bacterial-feeding+fungal-feeding) nematodes, pointing to mixing causing a significant switch from the bacterial-based to the fungal-based energy channel. Litter mixing sometimes influenced the community composition and diversity of nematodes and macrofauna, but effects of litter mixing on diversity were not necessarily positive, and were much weaker than effects of litter species identity on diversity. We conclude that litter mixing effects on the abundance and diversity of decomposer biota, when they occur, are likely to be of secondary and generally minor significance when compared to the effects of litter species identity and composition.  相似文献   

8.
Recently there has been much interest in the effect of litter mixing as well as the effect of different forest habitats on the decomposition process. Our aim was to test two hypotheses: high quality litter promotes decomposition of poor quality litter, and litter decomposes faster in broadleaf than in coniferous forest. We conducted a litter mixing experiment using litterbags placed in two forest floors, in which treatments consisted of litter monocultures of each of two campy species (Castanopsis eyrei and Pinus massoniana), as well as mixtures of these two species. The results showed that C. eyrei leaves decomposed significantly faster in the coniferous habitat than in their native habitat. On the other hand, P. massoniana needles decomposed significantly faster in their native coniferous habitat than in the broadleaf habitat. In our experiment we found that the mixture had different effect on different quality litter. P. massoniana needles (poor quality) had a positive effect on the decomposition of C. eyrei leaves (high quality), while C. eyrei leaves had a negative effect on the decomposition of P. massoniana needles in the mixture case in both broadleaf and coniferous habitats. The diversity of the fungi identified from different litters varied among treatments and the mass loss was positively correlated with the Shannon–Weaver diversity index of fungi. It is suggested that fungi may be one of the major drivers to control the decomposition process.  相似文献   

9.
Human activity has induced a multitude of global changes that are likely to affect the functioning of ecosystems. Although these changes act in concert, studies on interactive effects are scarce. Here, we conducted a laboratory microcosm experiment to explore the impacts of temperature (9, 12 and 15 °C), changes in soil humidity (moist, dry) and plant diversity (1, 4, 16 species) on soil microbial activity and litter decomposition.We found that changes in litter decomposition did not mirror impacts on microbial measures indicating that the duration of the experiment (22 weeks) may not have been sufficient to determine the full magnitude of global change effects. However and notably, changes in temperature, humidity and plant litter diversity/composition affected in a non-additive way the microbial parameters investigated. For instance, microbial metabolic efficiency increased with plant diversity in the high moisture treatment but remained unaffected in low moisture treatment suggesting that climate changes may mask beneficial effects of biodiversity on ecosystem functioning. Moreover, litter decomposition was unaffected by plant litter diversity/composition but increased with increasing temperature in the high moisture treatment, and decreased with increasing temperature in the low moisture treatment.We conclude that it is inevitable to perform complex experiments considering multiple global change agents in order to realistically predict future changes in ecosystem functioning. Non-additive interactions highlight the context-dependency of impacts of single global change agents.  相似文献   

10.
Forested landscapes in Southeast Asia are becoming increasingly fragmented, making this region a conservation and research priority. Despite its importance, few empirical studies of effects of fragmentation on biodiversity have been undertaken in the region, limiting our ability to inform land-use regimes at a time of increased pressure on forests. We estimated the biodiversity value of forest fragments in peninsular Malaysia by studying fragmentation impacts on insectivorous bat species that vary in dependence of forest. We sampled bats at seven continuous forest sites and 27 forest fragments, and tested the influence of fragment isolation and area on the abundance, species richness, diversity, composition and nestedness of assemblages, and the abundance of the ten most common species. Overall, isolation was a poor predictor of these variables. Conversely, forest area was positively related with abundance and species richness of cavity/foliage-roosting bats, but not for that of cave-roosting or edge/open space foraging species. The smallest of fragments (<150 ha) were more variable in species composition than larger fragments or continuous forest, and larger fragments retained substantial bat diversity, comparable to continuous forest. Some fragments exhibited higher bat abundance and species richness than continuous forest, though declines might occur in the future because of time lags in the manifestation of fragmentation effects. Our findings suggest that fragments >300 ha contribute substantially to landscape-level bat diversity, and that small fragments also have some value. However, large tracts are needed to support rare, forest specialist species and should be the conservation priority in landscape-level planning. Species that roost in tree cavities or foliage may be more vulnerable to habitat fragmentation than those that roost in caves.  相似文献   

11.
Climate warming and associated increases in nutrient mineralization may increase the availability of soil nitrogen (N) in high latitude ecosystems, such as boreal forests. These changes in N availability could feed back to affect the decomposition of litter and organic matter by soil microbes. Since fungi are important decomposers in boreal forest ecosystems, we conducted a 69-day incubation study to examine N constraints on fungal decomposition of organic substrates common in boreal ecosystems, including cellulose, lignin, spruce wood, spruce needle litter, and moss litter. We added 0, 20, or 200 μg N to vials containing 200 mg substrate in factorial combination with five fungal species isolated from boreal soil, including an Ascomycete, a Zygomycete, and three Basidiomycetes. We hypothesized that N addition would increase CO2 mineralization from the substrates, particularly those with low N concentrations. In addition we predicted that Basidiomycetes would be more effective decomposers than the other fungi, but would respond weakly or negatively to N additions. In support of the first hypothesis, cumulative CO2 mineralization increased from 635 ± 117 to 806 + 108 μg C across all fungal species and substrates in response to 20 μg added N; however, there was no significant increase at the highest level of N addition. The positive effect of N addition was only significant on cellulose and wood substrates which contained very little N. We also observed clear differences in the substrate preferences of the fungal species. The Zygomycete mineralized little CO2 from any of the substrates, while the Basidiomycetes mineralized all of the substrates except spruce needles. However, the Ascomycete (Penicillium) was surprisingly efficient at mineralizing spruce wood and was the only species that substantially mineralized spruce litter. The activities of β-glucosidase and N-acetyl-glucosaminidase were strongly correlated with cumulative respiration (r = 0.78 and 0.74, respectively), and Penicillium was particularly effective at producing these enzymes. On moss litter, the different fungal species produced enzymes that targeted different chemical components. Overall, our results suggest that fungal species specialize on different organic substrates, and only respond to N addition on low N substrates, such as wood. Furthermore, the response to N addition is non-linear, with the greatest substrate mineralization at intermediate N levels.  相似文献   

12.
Habitat loss and fragmentation promote relatively predicable shifts in the functional signature of tropical forest tree assemblages, but the full extent of cascading effects to biodiversity persistence remains poorly understood. Here we test the hypotheses that habitat fragmentation (a) alters the relative contribution of tree species exhibiting different reproductive traits; (b) reduces the diversity of pollination systems; and (c) facilitates the functional convergence of reproductive traits between edge-affected and early-secondary forest habitats (5-32 years old). This study was carried out in a severely fragmented 670-km2 forest landscape of the Atlantic forest of northeastern Brazil. We assigned 35 categories of reproductive traits to 3552 trees (DBH ? 10 cm) belonging to 179 species, which described their pollination system, floral biology, and sexual system. Trait abundance was calculated for 55 plots of 0.1 ha across four habitats: forest edges, small forest fragments (3.4-83.6 ha), second-growth patches, and core tracts of forest interior within the largest available primary forest fragment (3500 ha) in the region. Edge-affected and secondary habitats showed a species-poor assemblage of trees exhibiting particular pollination systems, a reduced diversity of pollination systems, a higher abundance of reproductive traits associated with pollination by generalist diurnal vectors, and an elevated abundance of hermaphroditic trees. As expected, the reproductive signature of tree assemblages in forest edges and small fragments (edge-affected habitats), which was very similar to that of early second-growth patches, was greatly affected by both habitat type and plot distance to the nearest forest edge. In hyper-fragmented Atlantic forest landscapes, we predict that narrow forest corridors and small fragments will become increasingly dominated by edge-affected habitats that can no longer retain the full complement of tree life-history diversity and its attendant mutualists.  相似文献   

13.
Low intensity control burns are a standard fuel reduction management tool used in pine barrens ecosystems. Periodic disturbances through fire can be an important influence on the cycling of nutrients within the ecosystem. Previous studies have shown that the inorganic chemistry of leaf litter residues differs with increasing temperature. Our study compared chemical changes in white oak (Quercus alba), pitch pine (Pinus rigida) and black huckleberry (Gaylussacia baccata), characteristic of the New Jersey pine barrens, during thermal decomposition using FT-IR spectroscopy. Three replicates of senescent leaf material were ground and separately heated for 2 h at: 100, 200, 300, 400 and 550 °C. These temperatures are representative of the range seen in fuel reducing prescribed burns in the pine barrens. Unburned litter of each species was used as a control. An optimization process using varying amounts of KBr and oak litter was performed to develop favorable FT-IR spectral conditions for a sample to KBr ratio of 0.75%. Chemometric analysis of the FT-IR spectra using principal component analysis (PCA) was used to analyze the changes in carbohydrate chemistry of each litter plant species (leaf litter species) at each temperature. In general, it appears that there is clear separation of leaf litter species at the different combustion temperatures. Infrared spectroscopy illustrated that all three species shared wavenumbers characteristic of the primary components of leaves such as cellulose, lignin and hemicellulose. Results from the PCA indicated separation of litter species and species by combustion temperature. PC axis 1 corresponds to the effects of temperature on leaf litter species and PC axis 2 separates the leaf litter species. At the low temperatures (control-200 °C), oak, pine and huckleberry litter species separated from each other. Wavenumbers that contributed to the separation of species at low temperatures belonged to functional group stretching frequencies of outer surface waxes, basic sugars, fatty acids and aldehydes. It appears that oak had more IR bands specific to suberin content. Convergence of these species occurs at 300 °C. Complexity of chemical composition decreases at this particular temperature as is shown by the decrease in wavenumber richness when compared to litters at low and high temperatures. Oak, pine and huckleberry had similar IR spectra showing bands belonging to outer surface wax content, pectin, lignin and hemicellulose. With increasing temperatures (400-550 °C), differences between litter species increased slightly. Plant material was reduced to similar composition due to thermal decomposition, which consisted of inorganic materials such as carbonate, phosphate and sulfate ions and possible fused aromatics.  相似文献   

14.
The invasive, non-native herb, giant knotweed (Polygonum sachalinense), is becoming increasingly common in riparian corridors throughout North America and Europe. Despite its prevalence, there has been limited study of its ecological impacts. We investigated the effects of knotweed invasion on the abundance and diversity of forest understory plants, and the quantity and nutrient quality of leaf-litter inputs, in riparian forests in western Washington, USA. Among 39 sampling locations, knotweed stem density ranged from 0 to 8.8 m−2. Richness and abundance (cover or density) of native herbs, shrubs, and juvenile trees (?3 m tall) were negatively correlated with knotweed density. Where knotweed was present (>5.3 stems m−2), litter mass of native species was reduced by 70%. Carbon:nitrogen ratio of knotweed litter was 52:1, a value 38-58% higher than that of native woody species (red alder [Alnus rubra] and willow [Salix spp.]). Resorption of foliar N prior to leaf drop was 76% in knotweed but only 5-33% among native woody species. By displacing native species and reducing nutrient quality of litter inputs, knotweed invasion has the potential to cause long-term changes in the structure and functioning of riparian forests and adjacent aquatic habitats.  相似文献   

15.
Scots pine (Pinus sylvestris) needle litter originating from control plots and plots that had received a wood ash fertilization (3 t ha−1) 19 yr earlier were allowed to decompose in a reciprocal experimental design to detect the effects of ash fertilization and needle litter origin on the decomposition rate. The experimental design was repeated in two Scots pine forest stands of different fertility and the litterbags were harvested after 4 and 16 months. Ash fertilization resulted in a higher needle litter decomposition rate but the needle origin did not influence the results. Stand fertility correlated positively to the decomposition rate.  相似文献   

16.
In nature management, the introduction of large herbivores into human-influenced grasslands is thought to be effective to maintain or enhance plant diversity. In order to test the validity of this assumption, we studied the effect of grazing by large herbivores on plant species richness and community heterogeneity across a soil acidity gradient at different spatial scales in dry coastal dune grasslands in western Belgium and north-western France. The effect of grazing on plant richness varied with scale and soil acidity. Grazing had a predominantly positive effect on plant species richness in all habitats at the small scale (0.25 × 0.25 m). However, at site scale (8 × 8 m) it had only positive effects in grasslands with higher soil pH (6-7.4). Similarly, grazing resulted in a homogenization of grassland vegetation at lower pH, while heterogeneity increased with grazing on soil with higher pH. In general, grazing increased the number of rare species, independent of soil pH. The results confirm that the impact of grazing on plant diversity depends on the scale considered and that the effects further depend on soil acidity which was correlated to biomass production at the given soil pH range in this study. Although grazing seems an appropriate management tool to maintain and even enhance plant biodiversity under many circumstances, it may negatively affect plant species richness, where soil resources limit plant biomass production.  相似文献   

17.
Tropical forest fragmentation affects both biodiversity and plant reproductive success when small, isolated fragments sustain a reduced diversity or abundance of pollinators. Fragmentation-related effects have been poorly investigated in the case of palms, an important structural and functional component of tropical forests. We examined the relationships between fragment size and diversity and abundance of flower visitors, and palm reproduction, by quantifying the arthropod fauna associated to inflorescences of the palm Astrocaryum mexicanum, and its fruit set, in fragments of different size. The sample yielded a total of 228,772 arthropods (10 orders, 60 species). Coleoptera was the predominant group (?50% of the species), followed by Hymenoptera (20%), while the remaining (30%) was distributed among the other eight orders. We found a predominance of pollinating insects (Coleoptera-Nitidulidae), representing 85% of all visitors. Pollinator abundance was negatively affected by fragmentation, with a 4.2-fold average difference between small (<35 ha) and large (114-700 ha) fragments. However, fruit set was relatively high (?0.7) and not affected by fragmentation during three reproductive seasons. This could be explained because small fragments retained remarkably high numbers of pollinators (1191.4/inflorescence) and by the high abundance of palms (and flowers) in fragments. Further research is needed, however, to assess if fragmentation restricts pollinator movements to plants within the fragments, leading to a reduction in genetic variation of the progeny present in forest remnants.  相似文献   

18.
Diverse plant litter mixtures frequently decompose differently than expected compared to the average of the component species decomposing alone, and it remains unclear why decomposition may respond non-additively to diversity. Here, we hypothesized that litter chemical composition and chemical diversity would be important determinants of the strength and direction (synergistic versus antagonistic) of non-additive soil carbon (C) and nitrogen (N) cycling responses to litter mixtures. To test this, we performed a soil incubation experiment using litter mixtures comprised of up to four plant species, and we measured three components of decomposition: respiration, net N mineralization, and microbial biomass N accumulation. We used nine chemical traits to calculate the chemical composition and diversity of the litter mixtures. First, we found that respiration responded as the average of the individual species in the mixture (i.e. additively), rather than non-additively as initially predicted. Second, litter mixtures stimulated significantly more net N immobilization than expected in 64% of cases, and non-additive responses were highly dependent on mixture chemical composition, and were influenced to a lesser degree by chemical diversity. Specifically, concentrations of tannins and certain low molecular weight phenolics in the mixtures were positively correlated with greater N immobilization than expected. Non-additive N mineralization responses were poorly correlated with traditional measures of litter chemistry like N concentration, C:N, lignin:N, and phenolic:N. Our results also show that non-additive N mineralization responses were affected by loss of some species significantly more than others, and the effects of species loss could depend on 1) whether a species contains compounds with strong effects on non-additive responses; and 2) whether those compounds are also found in other species. Finally, litter mixtures stimulated more microbial biomass N than expected in 45% of cases, but non-additive responses were only weakly dependent on the litter chemistry variables that we measured.  相似文献   

19.
Experiments using litter monocultures have indicated that litter decomposes faster on its home site owing to specialised decomposers leading to a home-field advantage (HFA). However, most natural forests, in particular tropical rainforests, harbour more than one species of trees, all of which contribute to the local litter layer. Since interactions among different litter types that cause non-additive decomposition dynamics may prevent HFA, the occurrence of HFA in such multispecies ecosystems is still a matter of debate. Here we studied whether there is an HFA in a highly diverse forest ecosystem in the Atlantic Rainforest of Brazil. We used a litter decomposition experiment using natural litter mixtures with reciprocal transfers among three forest successional stages that differed in their tree species composition and general litter quality. We also investigated the role of soil macro- and meso-invertebrates for HFA and their relative importance along a successional gradient. Results of various statistical procedures failed to demonstrate HFA. A reason for this lack of a HFA may be rapid shifts in the composition of local microbial communities in response to local litter quality. Our experiments indicate a rapid resilience of the microbial decomposition during forest regeneration.  相似文献   

20.
Decomposition occurs in the surface litter and soil to support temperate rainforests, but little is known about the protozoa that stimulate bacterial activity and turnover. I examined surface litter and top soils, fallen logs, and epiphytes within 2 m from the soil surface in Olympic National Park, USA, of the Pacific Northwest Temperate Coniferous Rain Forest. Ciliates in surface litter numbered 180-580 g−1 dry weight, but were reduced by 20-60% in the underlying soils. Testate amoebae numbered 18,000-77,000 g−1 dry weight in both litter and soil although they were often more abundant in underlying soils. Rotting logs, essential for tree regeneration, supported similar numbers of ciliates, but twice the numbers of testate amoebae. In three epiphytic soils, ciliates numbered 350-550, and testate amoebae 35,000-195,000 g−1 dry weight of soil. In these soils, 26 species of gymnamoebae, 64 species of ciliates, and 113 species of testate amoebae were found. About 65% of the individuals in ciliate and 45% in testate amoebae populations were small, r-selected taxa. Rain forest soil protozoa have distinct testate amoebae populations, and are characterized by enormous biodiversity, the dominance of acrostome species, the proliferation of Euglypha and Nebela species, and the appearance of aquatic taxa. Ecological succession of ciliates and testate amoebae follows an additive (non-replacement) pattern according to a neutral model. The large numbers of persistent r-selected species respond to ecosystem disturbances by mobilizing quickly to resume the bacterivory necessary to help restore the recovering above-ground plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号