首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
我国喀斯特区域面积分布较广,而喀斯特生态系统的退化已成为当前西南地区面临的严重的生态问题。本研究选取贵州中部两种不同植被类型的生态系统—乔木林和灌木林,以乔木林中的白栎、园果化香和灌木林中的火棘、竹叶椒等主要优势树种为对象,研究不同的植物树种对根际土壤微生物生物量及其细菌群落结构的影响。结果显示:乔木林系统中根际土壤微生物生物量碳、氮显著性高于灌木林,植物的根际效应在乔木林中表现更为显著;同时乔木林中的优势树种通过根系分泌物的作用显著提高根际土壤细菌多样性指数,而灌木林中优势树种的根际土壤微生物量及多样性均未表现出明显的根际效应。因此,植被的演替通过改变土壤微生物的特性影响植物-微生物-土壤之间的物质和能量循环,进一步影响喀斯特生态系统的稳定和健康功能。  相似文献   

2.
The effects of soybean growth on Cu speciation and distribution in two artificially Cu-contaminated soils (phaiozem, a Mollisol, and burozem, an Alfisol) were investigated using a rhizobox culture system followed by the sequential chemical extraction technique. The rhizosphere soils in the rhizobox were separated with nylon cloth into 11 sections: a central zone (4 mm in width) and ten side rhizosphere subzones (1 mm in width). The Cu fractions in Cu-contaminated phaiozem could be ranked as EXCH (exchangeable Cu)<ACID (HAc extractable Cu)< FeMnOX (bound to Fe–Mn oxides)<OM (bound to organic matter)<RES (residual Cu), and in Cu-contaminated burozem as EXCH< FeMnOX< OM< ACID< RES. Soybean growth resulted in an obvious increase of EXCH-Cu in the rhizosphere soil in the first 4 weeks of incubation, with the biggest increase in the central zone. Compared with the unplanted control soil, the content of ACID-Cu in soybean rhizosphere increased in the first 2–3 weeks of incubation and then decreased towards the end of the experiment (6 weeks). The increasing tendency was also observed in the FeMnOX-Cu fraction during the first 3 weeks and the OM-Cu fraction during the first 4 weeks, and their increments were obviously larger than those of the EXCH-Cu and ACID-Cu fractions. This suggested that more RES-Cu activated by the action of soybean roots was partitioned into the less phytoavailable forms, FeMnOX-Cu and OM-Cu. This may be of a benefit to the normal growth of soybean in Cu-contaminated soils. By the end of cultivation, the content of FeMnOX-Cu decreased, but only a small part of Cu was absorbed by soybean, being most of the Cu loss partitioned into the RES-Cu fraction.  相似文献   

3.
We studied the microbial communities in maize (Zea mays) rhizosphere to determine the extent to which their structure, biomass, activity and growth were influenced by plant genotype (su1 and sh2 genes) and the addition of standard and high doses of different types of fertilizer (inorganic, raw manure and vermicompost). For this purpose, we sampled the rhizosphere of maize plants at harvest, and analyzed the microbial community structure (PLFA analysis) and activity (basal respiration and bacterial and fungal growth rates). Discriminant analysis clearly differentiated rhizosphere microbial communities in relation to plant genotype. Although microorganisms clearly responded to dose of fertilization, the three fertilizers also contributed to differentiate rhizosphere microbial communities. Moreover, larger plants did not promoted higher biomass or microbial growth rates suggesting complex interactions between plants and fertilizers, probably as a result of the different performance of plant genotypes within fertilizer treatments, i.e. differences in the quality and/or composition of root exudates.  相似文献   

4.
栽培模式及施肥对玉米和大豆根际土壤磷素有效性的影响   总被引:2,自引:1,他引:2  
栽培模式及施肥管理对作物吸收利用土壤磷素的影响较大,本研究为探明玉米/大豆套作系统作物根系交互作用下根际土壤无机磷组分动态变化特征,利用盆栽试验测定了玉米/大豆套作(M/S)、玉米单作(MM)和大豆单作(SS)3种栽培模式以及不施肥(CK)、施氮钾肥(NK)和施氮磷钾肥(NPK)3种施肥处理下玉米和大豆地上部生物量及吸磷量和根际与非根际土壤速效磷、无机磷组分含量,以期为优化玉米/大豆套作系统磷素管理提供理论依据。研究结果表明同一施肥水平下,套作玉米的籽粒产量显著高于单作玉米;施磷显著提高了单作玉米籽粒产量,而对套作玉米籽粒产量影响不大。无论施肥与否,套作大豆秸秆及籽粒产量均高于单作大豆。所有施肥处理均表现为套作模式下单株作物地上部磷积累量显著高于单作模式。玉米成熟期,CK、NK处理下套作玉米根际土壤速效磷含量分别比单作玉米高54.2%和71.8%;大豆始花期,NPK处理下套作大豆根际土壤速效磷含量比单作大豆高19.8%。大豆成熟期,NK、NPK处理下套作大豆根际土壤速效磷含量分别比单作大豆高23.8%和108.0%。无论是单作还是套作模式,玉米根际土壤Al-P含量在3个施肥处理下均低于非根际土壤。CK和NK处理下单作玉米根际土壤Al-P含量分别是套作玉米的1.19倍和1.22倍;NPK处理下单作玉米根际土壤Fe-P含量是套作玉米的1.21倍。在CK、NK和NPK施肥处理下,单作大豆根际土Al-P含量分别是套作大豆1.12倍、1.30倍和1.25倍,单作大豆非根际土Al-P含量分别是套作大豆的1.22倍、1.30倍和1.06倍。CK、NK处理下单作大豆根际土壤Fe-P含量分别是套作大豆的1.47倍和1.12倍。研究得出结论,低磷条件下,与单作相比,玉米/大豆套作更有利于作物对土壤Al-P、Fe-P的活化吸收。  相似文献   

5.
The goal of this study was first to assess the dynamics of the bacterial community during a growing season in three Indian rain-fed wheat fields which differ mainly through their fertilizer management and yield and then to study the effects of PGPR/AMF bio-inoculations on the bacterial community structure and wheat growth. The bacterial community structure of the rhizosphere soil (RS) and the rhizoplane/endorhizosphere (RE) was determined by PCR-denaturing gradient gel electrophoresis. Seed treatments consisted of consortia of two PGPR strains alone or combined with AMF or AMF alone. The PGPR strains were Pseudomonas spp. which included some or all of the following plant growth promoting properties: phosphate solubilisation and production of indole-3-acetic acid, siderophores, 1-aminocyclopropane-1-carboxylate deaminase and diacetyl-phloroglucinol. The mycorrhizal inoculum was an indigenous AMF consortium isolated from the field with the lowest level of fertilization and yield. Variation partitioning analysis of the DGGE data indicated a predominant effect of the wheat growth stage (30.4% of the variance, P=0.001) over the type of field (9.0%, P=0.027) on the bacterial community structure in the RE. The impact of plant age in the RS was less than in the RE and the bacterial community structure of the field with the highest input of fertilization was very different from the low input fields. The bio-inoculants induced a significant modification in the bacterial community structure. In the RS, the bacterial consortia explained 28.3% (P=0.001) and the presence of AMF 10.6% (P=0.02) of the variance and the same trend was observed in the RE. Plant yield or grain quality was either increased or remained unaffected. For example, protein content was significantly higher in the treated plants' grain compared to the control plants; maximum values were obtained when the PGPR were co-inoculated with the AMF. The percentage of root colonization by AMF was significantly higher in the treatments containing a mycorrhizal inoculum than in the untreated control and remained unaffected by the PGPR treatments. In conclusion, the wheat rhizobacterial community structure is highly dynamic and influenced by different factors such as the plant's age, the fertilizer input and the type of bio-inoculant. In addition, there is a distance-related effect of the root on the bacterial community. Finally, a combined bio-inoculation of diacetyl-phloroglucinol producing PGPR strains and AMF can synergistically improve the nutritional quality of the grain without negatively affecting mycorrhizal growth.  相似文献   

6.
殷全玉  郭夏丽  赵铭钦  王岩 《土壤》2012,44(6):960-965
在大田环境条件下,采用随机区组设计,研究延边地区3种类型土壤烤烟全生育期根际和非根际土过氧化氢酶、脲酶和转化酶活性,pH值,碱解氮、速效钾和速效磷含量动态变化.结果表明:延边地区植烟土壤根际土过氧化氢酶、脲酶和转化酶活性平均为0.60U,0.48U和22.09U,根际效应在不同土壤酶间存在差异:过氧化氢酶(R/S=1.08)<脲酶(R/S=1.14)<转化酶(R/S=1.51).暗棕壤烟株根际土3种酶活性和酶活根际效应均高于其他两种类型土壤.烟株根际土pH值、碱解氮、速效磷和速效钾含量分别为5.42、72.52 mg/kg、33.36 mg/kg和402.04 mg/kg,根际效应表现为:pH(R/S=0.91)<碱解氮(R/S=0.98)<速效磷(R/S=1.99)<速效钾(R/S=2.46).烟株根际土pH值、碱解氮和速效钾含量均表现为:暗棕壤>黑砂土>白浆土,根际土速效磷含量与此相反.结论:暗棕壤烟株根际效应较大,酶活性较高、养分富集较多,为烟株生长提供了良好的养分供应环境,是暗棕壤烟叶质量优于黑砂土和白浆土的原因之一.  相似文献   

7.
长期施肥对黑土农田土壤微生物群落的影响   总被引:20,自引:1,他引:20  
魏巍  许艳丽  朱琳  韩晓增  Li S 《土壤学报》2013,50(2):372-380
基于中国科学院海伦农业生态试验站长期定位试验区,应用实时荧光定量PCR(Real-time PCR)和变性梯度凝胶电泳(DGGE)技术研究了无施肥(NF)、单施N、P化肥(NP)以及化肥配施有机猪粪肥(NPM)等3种长期施肥措施对黑土区玉米田土壤微生物群落密度和结构的影响.Real-time PCR方法定量NF、NP及NPM措施土壤细菌群落基因组DNA质量分别为381、1 351和1 773 ng g-1干土,真菌群落基因组DNA质量分别113.3、127.3和20.6 ng g-1干土,真菌与细菌的比率分别为0.31、0.09和0.01,NPM措施显著低于另两种施肥方式(p<0.05).DGGE方法研究表明,NP和NPM措施不能改善土壤细菌和真菌群落的多样性、均匀性及优势菌优势程度;但主成分分析结果显示NP和NPM措施均可改变土壤细菌和真菌群落的构成,且真菌群落的变化更为显著;聚类分析结果显示NP和NPM措施下细菌群落结构较相近,其相似系数为0.89,真菌群落中NP措施与NF措施相近,相似系数为0.63,高于NP与NPM措施的相似系数0.51.上述结果表明有机猪粪肥的长期施用可以显著降低黑土农田土壤真菌与细菌的比率,且明显地改变土壤细菌和真菌群落的结构.  相似文献   

8.
The soil microbial community is strongly influenced by a wide variety of factors, such as soil characteristics and field management systems. In order to use biological indicators based on microbial community structure, it is very important to know whether or not these factors can be controlled. The present study aimed to determine whether soil type or fertilization has a greater influence on the soil microbial community based on denaturing gradient gel electrophoresis (DGGE) analysis of 12 experimental field plots containing four different soil types, Cumulic Andosol, Low-humic Andosol, Yellow Soil and Gray Lowland Soil, kept under three different fertilizer management systems since 2001 (the application of chemical fertilizer, the application of rice husk and cow manure, and the application of pig manure). Bacterial DGGE analysis using 16S rRNA genes and fungal DGGE analysis using 18S rRNA genes revealed that the bacterial community was related to the soil type more than the fertilization; however, the fungal community was related to the fertilization more than the soil type. These results might suggest that the fungal community is easier to control by fertilization than the bacterial community. Thus, we propose that indicators based on the fungal community might be more suitable as microbial indicators for soil quality.  相似文献   

9.
ABSTRACT

Continuous cropping maca systems are widespread in Yunan Province, China. However, the relationships between continuous cropping maca systems and microbes are not well understood. The objective of this study was to determine the effects of continuous cropping maca systems (Maca with 0, 1, 2, and 3 years of continuous cultivation) on the soil microbial community. The results showed that the soil organic matter, total N, total P, and total K contents, as well as maca fresh and dry weight, decreased significantly with increased continuous cropping years. Interestingly, qPCR analysis showed that the bacterial and fungal abundance (DNA levels) decreased and active bacterial and fungal abundance (RNA levels) increased with cropping years from the first to the third cropping (p < 0.05). Moreover, the abundance of actinomycetes in the CK soil was significantly higher than that in the other maca soils. In addition, the continuous cropping system resulted in rich diversity in the fungal structure and had little effects on the bacterial and actinomycete communities. Acidobacteria (50%) and Ascomycota (58.3%) were detected in the continuous cropping maca soils. Based on the present results, continuous cropping of maca not exceeding two years could be optimal to maintain soil nutrition and microbial community.  相似文献   

10.
Paleoecological records of a 20 meter deep profile near an oasis settlement in northern Oman have yielded a chronosequence providing insights into relationships between vegetation, the environment and development of human settlements in this area over a period of time spanning 19,000 years. In conjunction with analysis of the chemical and physical properties of this profile, we hypothesized that bacterial community structures associated with this chronosequence may also constitute a part of the biogeochemical record of the climate history that has been preserved at this site. To examine this hypothesis, we studied the composition of the community as revealed by profiling of 16S rRNA genes at 1 meter intervals along the entire profile. The results of our study show distinct changes in bacterial communities with increasing depth that correspond with differences in the climatic record as indicated by the occurrence of micro-charcoal particles. Sequencing of 16S rRNA genes proved the presence of Acidobacteria, Actinobacteria, Proteobacteria, Gemmatimonadetes, Chloroflexi and representatives from the candidate divisions SPAM, NC10, and OP10. Differences in the communities support the hypothesis that the bacterial species compositions in the sediment reflect properties of the organic matter and vegetation at the time they were deposited.  相似文献   

11.
Diversity has been shown to be pivotal in ecosystem stability and resilience. It is therefore important to increase our knowledge about the development of diversity. The aim of this study was to investigate the temporal dynamics of the bacterial community structure in the rhizosphere of wheat plants growing in a soil in which the initial conditions for bacterial re-colonization were modified by mixing different amounts of sterilized with native soil at ratios of 19:1, 9:1, 4:1 and 1:1. Additional treatments comprised sterilized soil or native soil. Plant dry weight at day 20 decreased with increasing percentage of native soil in the mix. The bacterial community structure in the rhizosphere was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) at days 3, 14 and 20 after planting. The bacterial community in the sterilized soil had a lower diversity and evenness than the native soil. Both diversity and evenness increased with time in the sterilized soil. Community structure in the different mixes changed over time and the changes were mix-specific. Principal component analyses of the DGGE banding patterns showed clear differences between the treatments particularly at day 3 and day 14 and revealed changes in community structure within a few days in a given treatment. The results of the present study show that bacterial communities rapidly re-colonize sterilized soil. During re-colonization, the community structure changes rapidly with a general trend towards higher diversity and evenness. The changes in community structure over time are also affected by the amount of sterile substrate to be re-colonized.  相似文献   

12.
盐地碱蓬根际土壤细菌群落结构及其功能   总被引:2,自引:0,他引:2  
盐地碱蓬作为生物改良盐碱地的理想材料,其根际土壤微生物对土壤改良发挥着重要作用。为了深入探索环渤海滨海盐碱地碱蓬根际土壤细菌群落结构组成及其功能,采用Illumina Misep高通量测序平台对环渤海地区滨海盐碱地盐地碱蓬根际土壤和裸地土壤进行测序。从16个样本中获得有效序列734 792条, 4 285个OTUs,归属于41门、100纲、282目、400科、892属、1 577种。盐地碱蓬根际土壤细菌群落由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯曲门(Chloroflexi)、拟杆菌门(Bacteroidetes)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)、蓝藻细菌门(Cyanobacteria)、髌骨细菌门(Patescibacteria、浮霉菌门(Planctomycetes)组成。Alpha多样性计算结果表明,盐地碱蓬根际土壤细菌群落结构多样性高并与裸地土壤间差异显著;LEfSe(LDAEffectSize)分析发现,盐地碱蓬与裸地差异指示种明显不同。PCoA与相关性Heatmap表明,盐地碱蓬、速效氮、速效钾、速效磷、电导率是影响土壤细菌目类水平群落组成的主要因子。PICRUSt(Phylogenetic InvestigationofCommunitiesbyReconstructionofUnobserved States)分析表明微生物群落在新陈代谢等40个功能方面盐地碱蓬根际土壤比裸地土壤高。本研究表明盐地碱蓬覆盖能够降低土壤盐分,增加土壤养分,对土壤细菌群落多样性及其功能有积极作用。  相似文献   

13.
Bacterial densities, metabolic signatures and genetic structures were evaluated to measure the impact of soil enrichment of soluble organic carbon on the bacterial community structures. The exudates chosen were detected in natural maize exudates (glucose, fructose, saccharose, citric acid, lactic acid, succinic acid, alanine, serine and glutamic acid) and were used at a rate of 100 μg C g−1 day−1 for 14 days. Moreover two synthetic solutions with distinct carbon/nitrogen ratios (20.5 and 40.1), obtained by varying carboxylic and amino acids concentrations, were compared in order to evaluate the potential role of organic N availability. The in vitro experiment consisted of applying exudate solutions to bulk soil. In the case of the control, only distilled water was added. Both solutions significantly increased bacterial densities and modified the oxidation pattern of Biolog® GN2 plates with no effect of the C/N ratio on these two parameters. Genetic structure, measured by means of ribosomal intergenic spacer analysis (RISA), was also consistently modified by the organic amendments. N availability levels led to distinct genetic structures. In a second experiment, one of the previous exudate solutions (C/N 20.5) was applied to 15-day-old maize plants to determine the structural influence of exudates on the rhizosphere microbial community (in situ experiment). Bacterial densities were significantly increased, but to a lesser extent than had been found in the in vitro experiment. Metabolic potentials and RISA profiles were also significantly modified by the organic enrichment.  相似文献   

14.
We studied the effects of the application of organic (OM) and inorganic fertilizer (CF) on soil protease activity and proteolytic bacterial communities in rhizosphere and bulk soil on an experimental lettuce field in Hokkaido, Japan. The protease activity always was higher in soils of the OM than with the CF treatment, and also higher in the rhizosphere than in the bulk soil. We analyzed proteolytic bacterial communities by denaturing gradient gel electrophoresis (DGGE) of the alkaline metalloprotease (apr) and neutral metalloprotease (npr) genes. Most apr forms detected were closely related to apr of Pseudomonas fluorescens, and all npr variants closely resembled the gene of Bacillus megaterium. These results were consistent with findings from tests using cultured bacterial communities, indicating a high specificity of our PCR-DGGE for amplifying apr and npr genes. The community compositions of proteolytic bacteria were assessed by principal component analysis of the DGGE profiles. There were significant differences in the effects of CF and OM on the community compositions of apr- and npr-expressing bacteria, and the communities of the two types of bacteria played different roles in rhizosphere and bulk soil. We found significant correlations between the protease activity and the communities of the two types of bacteria. The results indicate that different proteolytic bacteria release different amounts or activities of protease, and that the composition of proteolytic bacterial communities may play a major role in determining overall soil protease activity.  相似文献   

15.
黑土农田施加AM菌剂对大豆根际菌群结构的影响   总被引:4,自引:0,他引:4  
为揭示在黑土农田条件下施加丛枝菌根(AM)菌剂对作物根际微生物群落的影响,试验以大豆为研究对象,田间播种时分别施加根内球囊霉(Glomus intraradices,GI)和摩西球囊霉(Glomus mosseae,GM)两种AM菌剂,以单施化肥处理(F)和不施加AM菌剂及化肥处理(CK)作为对照,采用传统与现代分子生物学手段,研究大豆根际土壤中菌群结构及根系内AM真菌多样性。结果表明:GI、GM处理的大豆菌根侵染率最高达到78.3%和86.6%;GI、GM、F处理的大豆根际土壤中可培养细菌、真菌和放线菌三大菌群的数量与CK处理相比显著提高(p0.05)。分离大豆结荚期根际土壤中AM真菌孢子,共获得Acaulospora属真菌3种,Glomus属真菌7种,孢子密度均较低,G.intraradices和G.mosseae均为各自处理的优势种群。对大豆结荚期根系和根际土壤PCR-DGGE图谱条带的丰度及优势条带测序分析,结果表明根际土壤中的AM真菌菌群数明显高于根系中AM真菌的菌群数量,GI处理的大豆根际土壤中AM真菌丰度值最大,GM处理大豆根系里的AM真菌丰度值最大,F处理的根际土壤中总AM真菌的数量最少;施加AM菌剂处理的大豆根系及根际土壤中的优势菌群分别为外源施加的两种AM真菌。  相似文献   

16.
Soil salinity is a major factor relating microbial communities to environmental stress in the microbial selection process as stress can reduce bacterial diversity. In the San Joaquin Valley (SJV) of California, the problem of increasing salinity and consequently, decreasing crop productivity, due to reuse of saline drainage water are major concerns. An experiment was conducted in a closed, recirculating volumetric lysimeter system (VLS) consisting of 24 experimental plant growth units to determine the interactive effects of salinity, boron and pH on rhizosphere and non-rhizosphere microbial composition of cucumber (Cucumis sativus L. cv. Seminis Turbo hybrid). Plants in the VLS were irrigated from individual reservoirs containing a modified half-strength Hoagland's nutrient solution combined with salinity, boron (B), and pH treatments. The results indicated that salinity and pH were the most influential factors affecting the growth of plants and the effect of boron on the plant was more severe under slightly acidic conditions. Total bacterial DNA was extracted from rhizosphere and non-rhizosphere samples, and a 236-bp DNA fragment in the V3 region of the small subunit ribosomal RNA genes of eubacteria was amplified. The 16S rRNA and the products were subjected to denaturing gradient gel electrophoresis (DGGE) and sequencing. Analyses of bacterial diversity showed that the effects of salinity, boron, and pH were more severe on the rhizosphere bacterial population during the first week of growing cucumber, with decreasing impacts with plant growth. However, there was no salinity-B-pH interaction effects on plant biomass, but the effects were seen in the number of heterotrophic bacteria in the rhizosphere and on species richness and diversity during week seven of the study. These suggest that the effects of salinity-B-pH interactions may influence microorganisms first before plants and may pose long term effects on soil quality.  相似文献   

17.
Canola crops have been shown to inhibit soil-borne pathogens in following crops. This effect is mainly attributed to the release of low molecular S-containing compounds, such as isothiocyanates, during microbial degradation of the crop residues. We have assessed the effect of low concentrations of phenylethylisothiocyanate (PEITC) on soil microbial communities as well as its rate of degradation in soil and determined the concentration of PEITC and the microbial community structure in the rhizosphere of canola. PEITC was degraded within 96 h by soil microorganisms. PEITC added to the soil daily for 5 d affected both bacterial and eukaryotic community structure, determined by PCR-DGGE. Community structures of bacteria and eukaryotes changed at PEITC concentrations between 1300 and 3790 pmol g−1 soil fresh weight but was unaffected at lower concentrations. The PEITC concentration in the rhizosphere of living canola roots was greater in first order laterals than in second order laterals. The maximal PEITC concentration detected in the rhizosphere was 1827 pmol g−1. Redundancy analysis of the DGGE banding patterns indicated a significant correlation between the PEITC concentration in the rhizosphere and the community structure of the active fraction of eukaryotes and bacteria in the rhizosphere. Other important factors influencing the microbial community structure were soil moisture and plant dry matter. It is concluded that canola may affect the soil microbial community structure not only after incorporation of canola residues but also during active growth of the plants.  相似文献   

18.
Despite an increase in the understanding of the soybean isoflavones involved in root-colonizing symbioses, relatively little is known about their levels in the rhizosphere and their interactions with the soil microbial community. Based on a 13-year experiment of continuous soybean monocultures, in the present study we quantified isoflavones in the soybean rhizosphere and analyzed the soil microbial community structure by examining its phospholipid fatty acid (PLFA) profile. Two isoflavones, daidzein (7, 4′-dihydroxyisoflavone) and genistein (5,7,4′- trihydroxyisoflavone), were detected in the rhizosphere soil of soybean plants, with the concentrations in the field varying with duration of mono-cropping. Genistein concentrations ranged from 0.4 to 1.2 μg g−1 dry soil over different years, while daidzein concentrations rarely exceeded 0.6 μg g−1 dry soil. PLFA profiling showed that the signature lipid biomarkers of bacteria and fungi varied throughout the years of the study, particularly in mono-cropping year 2, and mono-cropping years 6-8. Principal component analysis clearly identified differences in the composition of PLFA during different years under mono-cropping. There was a positive correlation between the daidzein concentrations and soil fungi, whereas the genistein concentration showed a correlation with the total PLFA, fungi, bacteria, Gram (+) bacteria and aerobic bacteria in the soil microbial community. Both isoflavones were easily degraded in soil, resulting in short half-lives. Concentrations as small as 1 μg g−1 dry soil were sufficient to elicit changes in microbial community structure. A discriminant analysis of PLFA patterns showed that changes in microbial community structures were induced by both the addition of daidzein or genistein and incubation time. We conclude that daidzein and genistein released into the soybean rhizosphere may act as allelochemicals in the interactions between root and soil microbial community in a long-term mono-cropped soybean field.  相似文献   

19.
以转入AtPAP15基因的两个磷养分高效转基因大豆株系AP15-1、AP15-3及其各自受体YC03-3、YC04-5为材料,在大田连续种植两季,通过在苗期、盛花期和成熟期采集根际土,对其进行pH和全磷、速效磷、有机磷、全氮、碱解氮、全钾、速效钾、及钼等八种微量元素含量的测定,并分析了盛花期AP15-1与其受体YC03-3根际土中酸性磷酸酶、过氧化氢酶、蔗糖酶和脲酶的活性变化,从而了解上述磷高效转基因大豆的种植是否会对根际土中主要养分和酶活性产生影响.研究结果显示:秋春两季根际土中除全钾和微量元素含量外,其他养分含量在个别时期,转基因大豆AP15-1或AP15-3与其受体之间,均存在显著性的差异,但这些显著性差异大部分出现在苗期,成熟期仅有机磷含量在AP15-1与其受体YC03-3、速效钾含量在AP15-3与其受体YC04-5之间呈显著差异,并且这些差异在两季中均未重复出现.根际土中四种土壤酶活性测定结果显示:同季转基因大豆与其受体之间差异不显著.总体结果表明,上述转AtPAP15基因磷高效大豆种植对根际土中磷、氮、钾等养分和四种土壤酶活性均未产生显著的影响.  相似文献   

20.
The efficiency of 13 phosphate-solubilizing bacteria (PSB; four Burkholderia sp., five Enterobacter sp., and four Bradyrhizobium sp.) was assessed in a soil plate assay by evaluating soil phosphorus (P) availability. A commercial argentine strain, Pseudomonas fluorescens, was used for comparing solubilizing activity. Burkholderia sp. PER2F, Enterobacter sp. PER3G, and Bradyrhizobium sp. PER2H strains solubilized the largest quantities of P in the soil plate assay after 60 days as compared with the other strains, including the commercial one. The effect of PSB inoculation on growth and nutrient uptake of soybean plants was also studied under greenhouse conditions. Plants inoculated with Burkholderia sp. PER2F had the highest aerial height and showed an appropriate N/P ratio. However, none of the PSB increased P uptake by plants. This suggests that PSB inoculation does not necessarily improve P nutrition in soybean, nor was there any relationship between P availability in the soil plate assay and P content in the soybean shoot in the greenhouse. We concluded that the selection of efficient PSB strains as possible inoculation tools for P-deficient soils should focus on the integral interpretation of soil assays, greenhouse experiments, and field trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号