首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance.  相似文献   

2.
The effect of the soil yeast, Rhodotorula mucilaginosa LBA, on Glomus mosseae (BEG n°12) and Gigaspora rosea (BEG n°9) was studied in vitro and in greenhouse trials. Hyphal length of G. mosseae and G. rosea spores increased significantly in the presence of R. mucilaginosa. Exudates from R. mucilaginosa stimulated hyphal growth of G. mosseae and G. rosea spores. Increase in hyphal length of G. mosseae coincided with an increase in R. mucilaginosa exudates. No stimulation of G. rosea hyphal growth was detected when 0.3 and 0.5 ml per petri dish of yeast exudates was applied. Percentage root length colonization by G. mosseae in soybean (Glycine max L. Merill) and by G. rosea in red clover (Trifolium pratense L. cv. Huia) was increased only when the soil yeast was inoculated before G. mosseae or G. rosea was introduced. Beneficial effects of R. mucilaginosa on arbuscular mycorrhizal (AM) colonization were found when the soil yeast was inoculated either as a thin agar slice or as a volume of 5 and 10 ml of an aqueous solution. R. mucilaginosa exudates (20 ml per pots) applied to soil increased significantly the percentage of AM colonization of soybean and red clover.  相似文献   

3.
The effect of elevated pCO2 (60 Pa) on the frequency of nitrate-dissimilating Pseudomonas (NDP) was investigated in the rhizosphere of fertilised Lolium perenne swards in the Swiss Free Air Carbon dioxide Enrichment (FACE) experiment. Numbers of cultivable root-associated Pseudomonas were greater under elevated (60 Pa) than under ambient (36 Pa) pCO2 in both high and low N-fertilised swards. For both pCO2 conditions, the NDP frequency decreased with closer root proximity to L. perenne roots in low fertilised swards. Anyway, in high N swards the NDP frequency was similar in root and soil fractions. Thus, N availability may be a major factor influencing NDP populations under elevated pCO2, most likely due to increased competition for N between plant and nitrate-dissimilating bacteria.  相似文献   

4.
Fertilizer costs are a major component of corn production. The use of biofertilizers may be one way of reducing production costs. In this study we present isolation and identification of three plant growth promoting bacteria that were identified as Enterobacter cloacae (CR1), Pseudomonas putida (CR7) and Stenotrophomonas maltophilia (CR3). All bacterial strains produced IAA in the presence of 100 mg l−1 of tryptophan and antifungal metabolites to several soilborne pathogens. S. maltophilia and E. cloacae had broad spectrum activity against most Fusarium species. The only strain that was positive for nitrogen fixation was E. cloacae and it, and P. putida, were also positive for phosphate solubilization. These bacteria and the corn isolate Sphingobacterium canadense CR11, and known plant growth promoting bacterium Burkholderia phytofirmans E24 were used to inoculate corn seed to examine growth promotion of two lines of corn, varieties 39D82 and 39M27 under greenhouse conditions. When grown in sterilized sand varieties 39M27 and 39D82 showed significant increases in total dry weights of root and shoot of 10-20% and 13-28% and 17-32% and 21-31% respectively. Plants of the two varieties grown in soil collected from a corn field had respective increases in dry weights of root and shoot of 10-30% and 12-35% and 11-19% and 10-18%. In sand, a bacterial mixture was highly effective whereas in soil individual bacteria namely P. putida CR7 and E. cloacae CR1 gave the best results with 39M27 and 39D82 respectively. These isolates and another corn isolate, Azospirillum zeae N7, were tested in a sandy soil with a 55 and 110 kg ha−1 of nitrogen fertility at the Delhi research Station of Agriculture and Agri-Food Canada over two years. Although out of seven bacterial treatments, no treatment provided a statistically significant yield increase over control plots but S. canadense CR11 and A. zeae N7 provided statistically significant yield increase as compared to other bacteria. The 110 kg rate of nitrogen provided significant yield increase compared to the 55 kg rate in both years.  相似文献   

5.
Twenty-eight Rhizobium strains were isolated from the root nodules of faba bean (Vicia faba L.) collected from 11 governorates in Egypt. A majority of these strains (57%) were identified as Rhizobium leguminosarum bv. viciae (Rlv) based on analysis of a nodC gene fragment amplified using specific primers for these faba bean symbionts. The strains were characterized using a polyphasic approach, including nodulation pattern, tolerance to environmental stresses, and genetic diversity based on amplified ribosomal DNA-restriction analysis (ARDRA) of both 16S and 23S rDNA. Analysis of tolerance to environmental stresses revealed that some of these strains can survive in the presence of 1% NaCl and a majority of them survived well at 37 °C. ARDRA indicated that the strains could be divided into six 16S rDNA genotypes and five 23S rDNA genotypes. Sequence analysis of 16S rDNA indicated that 57% were Rlv, two strains were Rhizobium etli, one strain was taxonomically related to Rhizobium rubi, and a group of strains were most closely related to Sinorhizobium meliloti. Results of these studies indicate that genetically diverse rhizobial strains are capable of forming N2-fixing symbiotic associations with faba bean and PCR done using nodC primers allows for the rapid identification of V. faba symbionts.  相似文献   

6.
Decomposer animals stimulate plant growth by indirect effects such as increasing nutrient availability or by modifying microbial communities in the rhizosphere. In grasslands, the spatial distribution of organic matter (OM) rich in nutrients depends on agricultural practice and the bioturbation activities of large detritivores, such as earthworms. We hypothesized that plants of different functional groups with contrasting nutrient uptake and resource allocation strategies differentially benefit from sites in soil with OM accumulation and the presence of decomposer animals. In a greenhouse experiment we investigated effects of spatial distribution of 15N-labelled grass litter, earthworms and collembola on a simple grassland community consisting of Lolium perenne (grass) and Trifolium repens (legume). Litter aggregates (compared to homogeneous litter distribution) increased total shoot biomass, root biomass and 15N uptake by the plants. Earthworms and collembola did not affect total N uptake of T. repens; however, the presence of both increased 15N uptake by T. repens and L. perenne. Earthworms increased shoot biomass of T. repens 1.11-fold and that of L. perenne 2.50 fold. Biomass of L. perenne was at a maximum in the presence of earthworms, collembola and with litter concentrated in a single aggregate. Shoot biomass of T. repens increased in the presence of collembola, with L. perenne generally responding opposingly. The results indicate that the composition of the decomposer community and the distribution of OM in soil affect plant competition and therefore plant community composition.  相似文献   

7.
Root-nodule bacteria that nodulate the legume genus Lotononis are being investigated to develop new forage species for agriculture. Bacteria isolated from nodules of Lotononis angolensis were fast-growing, highly mucoid and pink-pigmented, and on the basis of 16S rRNA phylogeny <94% related to other genera in the Alphaproteobacteria. Root-nodule bacteria isolated from other Lotononis species (L. bainesii, L. solitudinis and L. listii) resembled the more common dry, slow-growing, pink-pigmented rhizobia previously described for L. bainesii. These isolates could be attributed to the Methylobacterium genus, although not to the type species Methylobacterium nodulans. Further differences were uncovered with nodulation studies revealing that nodule isolates from L. angolensis were effective at nitrogen fixation on their host plant, but could nodulate neither L. bainesii nor L. listii. Reciprocal tests showed isolates from L. bainesii, L. listii and L. solitudinis were incapable of nodulating L. angolensis effectively. Nodule morphology for L. bainesii, L. angolensis and L. listii was characteristically lupinoid, with little structural divergence between the species, and with nodules eventually enclosing the entire root.  相似文献   

8.
It has been established that arbuscular mycorrhizal (AM) fungi are involved in the conservation of soil structure. However, the effect of ectomycorrhizal (EM) fungi alone or in interaction with AM fungi in soil structure has been much less studied. This experiment evaluated EM and AM fungi effects on soil aggregation and plant growth. Ash plants (Fraxinus uhdei) were grown in pots, and were inoculated with Glomus intraradices and Pisolithus tinctorius separately but also in combination. Our results showed that F. uhdei established a symbiotic association with EM and AM fungi, and that these organisms, when interacting, showed synergistic and additive effects on plant growth compared to singly inoculated treatments. EM and AM fungi prompted changes in root morphology and increased water-stable aggregates. AM fungi affect mainly small-sized macroaggregates, while EM and EM-AM fungi interaction mainly affected aggregates bigger than 0.5 mm diameter. These results suggest that ectomyccorrhizal as well as arbuscular mycorrhizal fungi should be considered in restoration programs with Fraxinus plants.  相似文献   

9.
Two strains of Gluconacetobacter diazotrophicus (Pal 5, UAP5541) and the arbuscular mycorrhizal fungus Glomus intraradices increased both the shoot and root dry weight of sorghum 45 days after inoculation, whereas they had no effect on the shoot and root dry weight of maize. Co-inoculation (Gluconacetobacter diazotrophicus plus Glomus mosseae) did not increase the shoot and root dry weight of either plant. There was a synergistic effect of Gluconacetobacter diazotrophicus on root colonization of maize by Glomus intraradices, whereas an antagonistic interaction was observed in the sorghum root where the number of Gluconacetobacter diazotrophicus and the colonization by Glomus intraradices were reduced. Plant roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices, either separately or together, significantly increased root endoglucanase, endopolymethylgalacturonase and endoxyloglucanase activities. The increase varied according to the plant. For example, in comparison with non-inoculated plants, there were higher endoglucanase (+328%), endopolymethylgalacturonase (+180%) and endoxyloglucanase (+125%) activities in 45-day old co-inoculated maize, but not in 45-day old sorghum. The possibility is discussed that hydrolytic enzyme activities were increased as a result of inoculation with Gluconacetobacter diazotrophicus, considering this to be one of the mechanisms by which these bacteria may increase root colonization by AM fungi.  相似文献   

10.
This study provides evidence that egg-parasitic nematophagous fungi, Pochonia chlamydosporia, Pochonia rubescens and Lecanicillium lecanii, can also reduce root colonisation and root damage by a fungal pathogen. Interactions of nematophagous fungi with the take-all fungus, Gaeumannomyces graminis var. tritici (Ggt), and their influence on severity of the root disease it causes were studied in laboratory and pot experiments. In Petri dish experiments the three nematophagous fungi reduced colonisation of barley roots by Ggt and also reduced necrotic symptoms. On the contrary, root colonisation by nematophagous fungi was unaffected by Ggt. In growth tube experiments, the three nematophagous fungi again reduced Ggt root colonisation and increased effective root length of barley seedlings. This was true for both simultaneous and sequential inoculation of nematophagous fungi versus Ggt. In the pot experiments the inoculum of the tested fungi in soil was applied in the same pot, as a mixture or in layers, or in coupled pots used for wheat grown with a split-root system. The nematophagous fungi P. chlamydosporia (isolate 4624) and L. lecanii (isolate 4629), mixed with Ggt or in split root systems with the pathogen, promoted growth of wheat (i.e. increased shoot weight), although no disease reduction was found. In split root systems, lower levels of peroxidase activity were found in seedlings inoculated with Ggt in combination with the nematophagous isolates 4624 and 4629 than when the take-all fungus was applied alone.Our results show that nematophagous fungi reduce root colonisation by Ggt, root damage and stress induced senescence in Ggt-inoculated plants.  相似文献   

11.
Eleven cadmium-tolerant bacterial strains were isolated from the root zone of Indian mustard (Brassica juncea L. Czern.) seedlings grown in Cd-supplemented soils as well as sewage sludge and mining waste highly contaminated with Cd. The bacteria also showed increased tolerance to other metals including Zn, Cu, Ni and Co. The isolated strains included Variovorax paradoxus, Rhodococcus sp. and Flavobacterium sp., and were capable of stimulating root elongation of B. juncea seedlings either in the presence or absence of toxic Cd concentrations. Some of the strains produced indoles or siderophores, but none possessed C2H2-reduction activity. All the strains, except Flavobacterium sp. strain 5P-3, contained the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which hydrolyses ACC (the immediate precursor of plant hormone ethylene) to NH3 and α-ketobutyrate. V. paradoxus utilized ACC as a sole source of N or energy. A positive correlation between the in vitro ACC deaminase activity of the bacteria and their stimulating effect on root elongation suggested that utilization of ACC is an important bacterial trait determining root growth promotion. The isolated bacteria offer promise as inoculants to improve growth of the metal accumulating plant B. juncea in the presence of toxic Cd concentrations and for the development of plant-inoculant systems useful for phytoremediation of polluted soils.  相似文献   

12.
In coastal foredunes, the grass Ammophila arenaria develops a soil community that contributes to die-back and replacement by later successional plant species. Root-feeding nematodes and pathogenic soil microorganisms are involved in this negative feedback. Regular burial by wind-blown beach sand results in vigorous growth of A. arenaria, probably because of enabling a temporary escape from negative soil feedback. Here, we examine the role of root-feeding nematodes as compared to the whole soil community in causing negative feedback to A. arenaria. We performed a 3-year sand burial experiment in the field and every year we determined the feedback of different soil communities to plant growth in growth chamber bioassays.In the field, we established A. arenaria in tubes with beach sand, added three endoparasitic root-feeding nematode species (Meloidogyne maritima, Heterodera arenaria and Pratylenchus penetrans) or root zone soil to the plants, and created series of ceased and continued sand burial. During three subsequent years, plant biomass was measured and numbers of nematodes were counted. Every year, bioassays were performed with the field soils and biomass of seed-grown A. arenaria plants was measured to determine the strength of feedback of the established soil communities to the plant.In the field, addition of root zone soil had a negative effect on biomass of buried plants. In the bioassays, addition of root zone soil also reduced the biomass of newly planted seedlings, however, only in the case when the field plants had not been buried with beach sand. Addition of the three endoparasitic root-feeding nematodes did not influence plant biomass in the field and in the bioassays. Our results strongly suggest that the negative feedback to A. arenaria is not due to the combination of the three endoparasitic nematodes, but to other components in the soil community, or their interactions with the nematodes.  相似文献   

13.
紫茎泽兰叶片凋落物对入侵地4 种草本植物的化感作用   总被引:5,自引:2,他引:3  
为了明确紫茎泽兰叶片凋落物对入侵地草本植物的化感作用, 研究了不同浓度紫茎泽兰叶片凋落物水提液对入侵地草本植物多年生黑麦草、白三叶、辣子草和紫花苜蓿种子萌发和幼苗生长的影响, 同时结合土培试验研究了叶片凋落物在入侵地土壤中的化感作用。结果表明, 除多年生黑麦草外, 水提液对其他3 种草本植物种子萌发均产生了显著的化感抑制作用, 且水提液的浓度越高抑制效果越强; 低浓度水提液对紫花苜蓿和辣子草的幼苗生长存在显著化感促进作用, 高浓度的水提液对除多年生黑麦草外的其他3 种植物幼苗的生长存在显著化感抑制作用, 水提液对多年生黑麦草幼苗生长的影响不显著; 土壤中按照50 g·kg-1的比例添加叶片凋落物后, 显著抑制了白三叶的生长, 而添加活性炭后, 白三叶的单株生物量相对于未添加活性炭的处理增加71.25%, 进一步证实叶片凋落物在土壤中的化感抑制作用。这说明外来入侵植物紫茎泽兰可能通过其叶片凋落物在入侵地土壤中降解, 释放化感物质, 抑制伴生植物的种子萌发和幼苗生长, 为自身创造有利的生长环境, 实现其成功入侵和扩张。  相似文献   

14.
 A soil microcosm experiment was performed to assess the uptake of Hg from various Hg-spiked food sources (soil, leaf litter and root litter of Trifolium alexandrinum) by two earthworm species, Lumbricus terrestris (anecic) and Octolaseon cyaneum (endogeic). Treatments were applied in which one of the three food sources was Hg spiked and the other two were not. Additional treatments in which all or none of the food sources were Hg spiked were used as controls. Uptake of Hg from soil into tissues of both earthworm species was significantly higher than uptake of Hg from leaf litter or root litter, indicating that soil may be the most important pool for the uptake of Hg into earthworms. In addition, the anecic L. terrestris significantly accumulated Hg from all Hg-spiked food sources (leaf litter, root litter and soil), whereas the endogeic O. cyaneum took up Hg mainly from soil particles. Interestingly, there was no further increase in Hg in L. terrestris when all food sources were Hg spiked compared to the single Hg-spiked sources. This may be attributed to the relatively high Hg content in the soil, which may have influenced the feeding behavior of the earthworms, although their biomass did not significantly decline. We suggest that, in addition to the physiological differences, feeding behavior may also play a role in the contrasting uptake of Hg by the two earthworm species.  相似文献   

15.
Two indole-producing Paenibacillus species, known to be associated with propagules of arbuscular mycorrhizal (AM) fungi, were examined for their mycorrhization helper bacteria activity at pre-symbiotic and symbiotic stages of the AM association. The effects were tested under in vitro and in vivo conditions using an axenically propagated strain of the AM fungus Glomus intraradices and Glycine max (soybean) as the plant host. The rates of spore germination and re-growth of intraradical mycelium were not affected by inoculation with Paenibacillus strains in spite of the variation of indole production measured in the bacterial supernatants. However, a significant promotion in pre-symbiotic mycelium development occurred after inoculation of both bacteria under in vitro conditions. The Paenibacillus rhizosphaerae strain TGX5E significantly increased the extraradical mycelium network, the rates of sporulation, and root colonization in the in vitro symbiotic association. These results were also observed in the rhizosphere of soybean plants grown under greenhouse conditions, when P. rhizosphaerae was co-inoculated with G. intraradices. However, soybean dry biomass production was not associated with the increased development and infectivity values of G. intraradices. Paenibacillus favisporus strain TG1R2 caused suppression of the parameters evaluated for G. intraradices during in vitro symbiotic stages, but not under in vivo conditions. The extraradical mycelium network produced and the colonization of soybean roots by G. intraradices were promoted compared to the control treatments. In addition, dual inoculation had a promoting effect on soybean biomass production. In summary, species of Paenibacillus associated with AM fungus structures in the soil, may have a promoting effect on short term pre-symbiotic mycelium development, and little impact on AM propagule germination. These findings could explain the associations found between some bacterial strains and AM fungus propagules.  相似文献   

16.
Elevated aluminum (Al) availability limits plant growth on acidic soils. Although this element is found naturally in soils, acidic conditions create an environment where Al solubility increases and toxic forms of Al impact plant function. Plant resistance to Al is often attributed to organic acid exudation from plant roots and the chelation of cationic Al in the rhizosphere. The association of arbuscular mycorrhizal (AM) fungi with the roots of plants may alleviate Al toxicity by altering soil Al availability or plant exposure through the binding of Al to fungal structures or through the influence of fungi on exudation from roots. Diverse communities of AM fungi are found in soil ecosystems and research suggests that AM fungi exhibit functional diversity that may influence plant performance under varying edaphic environments. In the present study, we evaluated acidic isolates of six AM species in their responses to Al. Andropogon virginicus (broomsedge), a warm-season grass that commonly grows in a range of stressful environments including acidic soils, was used as a plant host for Acaulospora morrowiae, Glomus claroideum, Glomus clarum, Glomus etunicatum, Paraglomus brasilianum, and Scutellospora heterogama. Fungal spores were germinated and exposed to 0 or 100 μM Al on filter paper in sand culture or were grown and exposed to Al in sand culture in association with A. virginicus. Short- and long-term responses to Al were evaluated using direct measurements of fungal spore germination, hyphal elongation, and measurements of A. virginicus colonization and plant growth as a phytometer of AM function in symbio. Spore germination and hyphal elongation varied among AM species in response to Al, but patterns were not consistent with the influences of these AM species on A. virginicus under Al exposure. Exposure to Al did not influence colonization of roots, although large differences existed in colonization among fungal species. Plants colonized by G. clarum and S. heterogama exhibited the least reduction in growth when exposed to Al, produced the highest concentrations of Al-chelating organic acids, and had the lowest concentrations of free Al in their root zones. This pattern provides evidence that variation among AM fungi in Al resistance conferred to their plant hosts is associated with the exudation of Al-binding organic acids from roots and highlights the role that AM fungal diversity may play in plant performance in acidic soil environments.  相似文献   

17.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

18.
The extent of damage to the host plant caused by Gaeumannomyces graminis var. tritici (Ggt) and var. graminis (Ggg) is a result of a net effect of host susceptibility and mycelium infectivity. The disease severity on cereal roots caused by G. graminis (Gg) fungi varies considerably depending on the genetic subtypes. Results of our rhizobox placement experiments additionally showed a subtype-specific effect of the spatial distance between host and fungus on the infection. The highest pathogenicity of each subtype was found in different zones of the root system: pathozones of different subtypes alternated along the root. The extent of the pathozone profiles did not depend on the infectivity of the inoculum and plant age. However, disease severity was shown to be affected by defence reactions of the host plant. An attack of a fungal subtype that is easily recognized by the host plant leads to defence reactions like increased root growth, thus minimizing the damage to the shoot. Detailed analysis showed that a Ggt subtype had a high potential for colonizing root laterals. It formed concentric zones of high colonization efficiency at a distance of ca. 5 cm around the shoot.  相似文献   

19.
Plants inoculated with arbuscular mycorrhizal (AM) fungi utilize more soluble phosphorus from soil mineral phosphate than non-inoculated plants. However, there is no information on the response of soil microflora to mineral phosphate weathering by AM fungi and, in particular, on the catabolic diversity of soil microbial communities.The AM fungus, Glomus intraradices was examined for (i) its effect on the growth of Acacia holosericea, (ii) plant-available phosphate and (iii) soil microbial activity with and without added rock phosphate.After 4-months culture, AM fungal inoculation significantly increased the plant biomasses (by 1.78× and 2.23× for shoot and root biomasses, respectively), while mineral phosphate amendment had no effect in a sterilized soil. After 12-months culture, the biomasses of A. holosericea plants growing in a non-sterilized soil amended with mineral phosphate were significantly higher than those recorded in the control treatment (by 2.5× and 5× for shoot and root biomasses, respectively). The fungal inoculation also significantly stimulated plant growth, which was significantly higher than that measured in the mineral phosphate treatment. When G. intraradices and mineral phosphate were added together to the soil, shoot growth were significantly stimulated over the single treatments (inoculation or amendment) (1.45×). The P leaf mineral content was also higher in the G. intraradices+mineral phosphate treatment than in G. intraradices or rock phosphate amendment. Moreover, the number of fluorescent pseudomonads has been significantly increased when G. intraradices and/or mineral phosphate were added to the soil. By using a specific type of multivariate analysis (co-inertia analysis), it has been shown that plant growth was positively correlated to the metabolization of ketoglutaric acid, and negatively linked to the metabolisation of phenylalanine and other substrates, which shows that microbial activity is also affected.G. intraradices inoculation is highly beneficial to the growth of A. holosericea plants in controlled conditions. This AM symbiosis optimises the P solubilization from the mineral phosphate and affects microbial activity in the hyphosphere of A. holosericea plants.  相似文献   

20.
The potential for field soils to cause Aphanomyces root rot of pea (Pisum sativum) was estimated for a large number of samples from commercial pea fields over a period of 5 years, using a greenhouse bioassay. The aim of the research project was to gain a mechanistic understanding of soil suppressiveness to the disease. Regression analysis showed that of the measured soil variables (Ca, Mg, K, P, pH), soil Ca concentrations had the strongest (negative) correlation with disease prevalence, and also a significant negative correlation with disease severity in samples with confirmed presence of the disease. Greenhouse bioassays using a set of non-infested soils inoculated with artificially produced oospore inoculum of the casual organism Aphanomyces euteiches, showed a similar negative correlation between soil Ca content and disease severity. Disease severity was not consistently affected by soil sterilisation, but was lowered by the addition of two different Ca salts. In contrast, addition of sodium bicarbonate to two soils lowered the content of water-soluble Ca in the soils and increased disease severity. Studies of cultures of A. euteiches exposed to varying Ca concentrations in vitro showed that zoospore production was inhibited at submillimolar concentrations, while mycelial growth was stimulated or unaffected. We conclude that free Ca is a major variable controlling the degree of soil suppressiveness against A. euteiches, and that inhibition of zoospore production from oospores is a possible mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号