首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Biserrula pelecinus is a pasture legume species new to Australian agriculture. The potential N benefit from B. pelecinus pastures in agricultural systems may not be realised if its symbiotic interactions with Mesorhizobium spp. are not well understood. This study evaluated the symbiotic interactions of four strains of Biserrula root-nodule bacteria (WSM1271, WSM1283, WSM1284, WSM1497) with four genotypes of B. pelecinus (cv. Casbah, 93GRC4, 93ITA33, IFBI1) and with a range of related legumes, including species known to be nodulated by strains of Mesorhizobium loti and other Mesorhizobium spp. Structures of root nodules were studied using light and electron microscopy enabling the ultrastructure of effective and ineffective nodules to be compared. B. pelecinus always formed typical indeterminate, finger-like nodules. The number of bacteroids inside symbiosomes varied between host×strain combinations, however, nodules formed by ineffective associations had well developed peribacteroid membranes and abundant bacteroids. Considerable variation was found in N2-fixing effectiveness of strains isolated from B. pelecinus on the four B. pelecinus genotypes. Strains WSM1271, WSM1284 and WSM1497 nodulated Astragalus membranaceus, only strains WSM1284 and WSM1497 nodulated Astragalus adsurgens. Strain WSM1284 also nodulated Dorycnium rectum, Dorycnium hirsutum, Glycyrrhiza uralensis, Leucaena leucocephala, Lotus edulis, Lotus glaber, Lotus maroccanus, Lotus ornithopodioides, Lotus pedunculatus, Lotus peregrinus, Lotus subbiflorus and Ornithopus sativus. The four strains from B. pelecinus did not nodulate Amorpha fruticosa, Astragalus sinicus, Cicer arietinum, Hedysarum spinosissimum, Lotus parviflorus, Macroptilium atropurpureum or Trifolium lupinaster. M. loti strain SU343 nodulated all four genotypes of B. pelecinus. However, M. loti strain CC829 only nodulated B. pelecinus genotypes 93ITA33 and IFBI1 and the nodules were ineffective. The root nodule isolates from H. spinosissimum (E13 and H4) nodulated B. pelecinus cv. Casbah whereas the commercial inoculant strain for Cicer (CC1192) could not nodulate any genotype of B. pelecinus. These results indicate that strains WSM1271, WSM1283 and WSM1497 isolated originally from B. pelecinus have a specific host range while strain WSM1284 is promiscuous in its capacity to nodulate with a broad range of related species. As B. pelecinus can be nodulated by Mesorhizobium spp. from other agricultural legumes, particularly Lotus, there is an opportunity to utilise this trait in cultivar development.  相似文献   

2.
Lime pelleting of the inoculated seed is recommended for most pasture legume species to improve survival of the rhizobia on the seed and to counter deleterious effects of soil or fertiliser acidity on rhizobial numbers. Except for New South Wales, lime pelleting is specifically not recommended for serradella (Ornithopus spp.). Our objectives were to evaluate effects of lime pelleting on bradyrhizobial numbers on seed, and nodulation and growth of the serradella plants. Three experiments are reported at two acid-soil sites in northern New South Wales involving four cultivars of yellow serradella (Ornithopus compressus) and Bradyrhizobium sp. (Lupinus) strains WSM471 (current inoculant strain) and WU425 and WSM480. Lime pelleting increased bradyrhizobial numbers on seed, 24 h after inoculation, by an average of 90%. Similarly, lime pelleting increased nodulation and shoot dry matter of the inoculated plants by an average of 57 and 28%, respectively. The three strains were similar in effects on plant growth. Relative values for shoot dry weight, averaged over sites, were 100 for WSM471 and 98 for both WU425 and WSM480. Our results confirmed previous research that lime pelleting inoculated serradella seed was not deleterious to survival of the bradyrhizobial inoculum, and showed that it could result in enhanced symbiotic activity of the inoculum in some instances. We recommend lime pelleting of serradella and that WSM471 remain the inoculant strain.  相似文献   

3.
Field pea (Pisum sativum L.) is widely grown in South Australia (SA), often without inoculation with commercial rhizobia. To establish if symbiotic factors are limiting the growth of field pea we examined the size, symbiotic effectiveness and diversity of populations of field pea rhizobia (Rhizobium leguminosarum bv. viciae) that have become naturalised in South Australian soils and nodulate many pea crops. Most probable number plant infection tests on 33 soils showed that R. l. bv. viciae populations ranged from undetectable (six soils) to 32×103 rhizobia g−1 of dry soil. Twenty-four of the 33 soils contained more than 100 rhizobia g−1 soil. Three of the six soils in which no R. l. bv. viciae were detected had not grown a host legume (field pea, faba bean, vetch or lentil). For soils that had grown a host legume, there was no correlation between the size of R. l. bv. viciae populations and either the time since a host legume had been grown or any measured soil factor (pH, inorganic N and organic C). In glasshouse experiments, inoculation of the field pea cultivar Parafield with the commercial Rhizobium strain SU303 resulted in a highly effective symbiosis. The SU303 treatment produced as much shoot dry weight as the mineral N treatment and more than 2.9 times the shoot dry weight of the uninoculated treatment. Twenty-two of the 33 naturalised populations of rhizobia (applied to pea plants as soil suspensions) produced prompt and abundant nodulation. These symbioses were generally effective at N2 fixation, with shoot dry weight ranging from 98% (soil 21) down to 61% (soil 30) of the SU303 treatment, the least effective population of rhizobia still producing nearly double the growth of the uninoculated treatment. Low shoot dry weights resulting from most of the remaining soil treatments were associated with delayed or erratic nodulation caused by low numbers of rhizobia. Random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) fingerprinting of 70 rhizobial isolates recovered from five of the 33 soils (14 isolates from each soil) showed that naturalised populations were composed of multiple (5-9) strain types. There was little evidence of strain dominance, with a single strain type occupying more than 30% of trap host nodules in only two of the five populations. Cluster analysis of RAPD PCR banding patterns showed that strain types in naturalised populations were not closely related to the current commercial inoculant strain for field pea (SU303, ≥75% dissimilarity), six previous field pea inoculant strains (≥55% dissimilarity) or a former commercial inoculant strain for faba bean (WSM1274, ≥66% dissimilarity). Two of the most closely related strain types (≤15% dissimilarity) were found at widely separate locations in SA and may have potential as commercial inoculant strains. Given the size and diversity of the naturalised pea rhizobia populations in SA soils and their relative effectiveness, it is unlikely that inoculation with a commercial strain of rhizobia will improve N2 fixation in field pea crops, unless the number of rhizobia in the soil is very low or absent (e.g. where a legume host has not been previously grown and for three soils from western Eyre Peninsula). The general effectiveness of the pea rhizobia populations also indicates that reduced N2 fixation is unlikely to be the major cause of the declining field pea yields observed in recent times.  相似文献   

4.
It is generally accepted that there are two major centers of genetic diversification of common beans (Phaseolus vulgaris L.): the Mesoamerican (Mexico, Colombia, Ecuador and north of Peru, probably the primary center), and the Andean (southern Peru to north of Argentina) centers. Wild common bean is not found in Brazil, but it has been grown in the country throughout recorded history. Common bean establishes symbiotic associations with a wide range of rhizobial strains and Rhizobium etli is the dominant microsymbiont at both centers of genetic diversification. In contrast, R. tropici, originally recovered from common bean in Colombia, has been found to be the dominant species nodulating field-grown common-bean plants in Brazil. However, a recent study using soil dilutions as inocula has shown surprisingly high counts of R. etli in two Brazilian ecosystems. In the present study, RFLP-PCR analyses of nodABC and nifH genes of 43 of those Brazilian R. etli strains revealed unexpected homogeneity in their banding patterns. The Brazilian R. etli strains were closely similar in 16S rRNA sequences and in nodABC and nifH RFLP-PCR profiles to the Mexican strain CFN 42T, and were quite distinct from R. etli and R. leguminosarum strains of European origin, supporting the hypothesis that Brazilian common bean and their rhizobia are of Mesoamerican origin, and could have arrived in Brazil in pre-colonial times. R. tropici may have been introduced to Brazilian soils later, or it may be a symbiont of other indigenous legume species and, due to its tolerance to acidic soils and high temperature conditions became the predominant microsymbiont of common bean.  相似文献   

5.
Burkholderia pseudomallei, the bacterial cause of the potentially fatal infection known as melioidosis, has a facultative intracellular lifestyle. The intracellular presence of B. pseudomallei in various eukaryotes including arbuscular mycorrhizal fungus (AMF) spores can be demonstrated in vitro. AMF spores were isolated from soils in a melioidosis-endemic area. B. pseudomallei and other Burkholderia spp. DNA was detected in these AMF spore samples, confirming an AMF spore-Burkholderia spp. association in soils which did not yield Burkholderia spp. by culture. This association may explain the environmental persistence, difficulty of recovery and dispersal of Burkholderia spp. in specific environments.  相似文献   

6.
Common bean (Phaseolus vulgaris) is native to the Americas, and Rhizobium etli is the dominant microsymbiont in both the Mesoamerican and the Andean centers of genetic diversification. Wild common beans are not found in Brazil, although the legume has been cropped in the country throughout time and all but one of the rhizobial species that nodulate it (Rhizobium gallicum) have been broadly detected in Brazilian soils. However, the majority of the effective rhizobial strains isolated so far from field-grown plants belong to R. tropici. This study describes the analysis of symbiotic and non-symbiotic genes of 15 effective R. tropici strains, isolated from four geographically distant regions in Brazil. With RFLP-PCR of the 16S and 23S rRNA genes and sequence analysis of 16S rRNA, two clusters were observed, one related to R. tropici type A and another to type B strains. Diversity in ribosomal genes was high, indicating that type A strains might represent a new species. High intraspecies diversity was also observed in the rep-PCR analysis with BOX, ERIC and REP primers. However, in the RFLP-PCR analysis of nifH and nodC genes, all R. tropici showed unique combinations of profiles, which might reflect an evolutionary strategy to maximize N2 fixation.  相似文献   

7.
Two strains of bacteria (Burkholderia sp., strain FeGL01, and Burkholderia caribiensis, strain FeGL03) were isolated from a Brazilian high phosphorus iron ore. The capacity of both strains to solubilize hydroxyapatite, Ca5(PO4)3(OH), was assessed in plate and batch cultures. In batch cultures, the concentration of solution-P showed two kinetics: an initial one, characterized by a continuously increasing kinetics and a second one, characterized by oscillatory kinetics. To understand the nature of these oscillations, phosphatic residues in the spent broth were collected before, during and after the oscillations, and characterized using scanning electron microscopy (SEM), energy-dispersive X-ray chemical microanalyses (EDX) and X-ray diffraction (XRD). From these studies, it was found that drops in P concentration were related to the formation of an intermediate phosphate in the residues, identified as brushite, CaHPO4·2H2O. Later increase of available P in the solution was found to be a consequence of re-dissolution of brushite crystals previously formed. Re-crystallization of brushite was also detected in plate cultures after 12-14 days of incubation  相似文献   

8.
Although rhizobia for common bean (Phaseolus vulgaris L.) are established in most Brazilian soils, understanding of their genetic diversity is very poor. This study characterized bean strains from two contrasting ecosystems in Brazil, the Northeast Region, with a semi-arid climate and neutral soils and the South Region, with a humid subtropical climate and acid soils. Seedlings of the cultivars Negro Argel and Aporé were used to trap 243 rhizobial isolates from 12 out of 14 sites. An analysis of ERIC-PCR products revealed enormous variability, with 81% of the isolates representing unique strains considering a level of 70% of similarity. In general, there was no effect of either the bean cultivar, or the ecosystem on rhizobial diversity. One-hundred and one strains showing genetic relatedness (ERIC-PCR) less than 70% were further analyzed using restriction fragment length polymorphism (RFLP) of the 16 S rDNA cleaved with five restriction enzymes. Twenty-five different profile combinations were obtained. Rhizobium etli was the predominant species, with 73 strains showing similar RFLP profiles, while 12 other strains differed only by the profile with one restriction enzyme. Fifty strains were submitted to sequencing of a 16 S rDNA fragment, and 34 clustered with R. etli, including strains with RFLP-PCR profiles similar to those species or differing by one restriction enzyme. However, other strains differing by one or two enzymes were genetically distant from R. etli and two strains with identical profiles showed higher similarity to Sinorhizobium fredii. Other strains showed higher similarity of bases with R. tropici, R. leguminosarum and Mesorhizobium plurifarium, but some strains were quite dissimilar and may represent new species. Great variability was also verified among the sequenced strains in relation to the ability to grow in YMA at 40 °C, in LB, to synthesize melanin in vitro, as well as in symbiotic performance, including differences in relation to the described species, e.g. many R. etli strains were able to grow in LB and in YMA at 40 °C, and not all R. tropici were able to nodulate Leucaena.  相似文献   

9.
Legumes may respond to non-rhizobial inoculants such as arbuscular mycorrhizal (AM) fungi either through an effect on plant growth or, in addition, through an effect on the function of the legume-Rhizobium symbiosis. We have examined the literature where the application of 15N isotope dilution methodology permits the effect of indigenous AM and AM inoculants to be quantitatively separated into plant-growth-mediated and biological N2 fixation (BNF)-mediated components. These studies clearly demonstrate the beneficial effects that both indigenous and inoculated AM have on legume growth, N uptake and the proportional dependence of the legume on atmospheric N2. While the published data allow an assessment of various biological, edaphic and environmental factors that affect the response of various legumes to AM inoculation, they also highlight the paucity of quantitative field data and the lack of understanding of the interaction of legume genotype with AM species with respect to legume symbiotic performance.  相似文献   

10.
Two indole-producing Paenibacillus species, known to be associated with propagules of arbuscular mycorrhizal (AM) fungi, were examined for their mycorrhization helper bacteria activity at pre-symbiotic and symbiotic stages of the AM association. The effects were tested under in vitro and in vivo conditions using an axenically propagated strain of the AM fungus Glomus intraradices and Glycine max (soybean) as the plant host. The rates of spore germination and re-growth of intraradical mycelium were not affected by inoculation with Paenibacillus strains in spite of the variation of indole production measured in the bacterial supernatants. However, a significant promotion in pre-symbiotic mycelium development occurred after inoculation of both bacteria under in vitro conditions. The Paenibacillus rhizosphaerae strain TGX5E significantly increased the extraradical mycelium network, the rates of sporulation, and root colonization in the in vitro symbiotic association. These results were also observed in the rhizosphere of soybean plants grown under greenhouse conditions, when P. rhizosphaerae was co-inoculated with G. intraradices. However, soybean dry biomass production was not associated with the increased development and infectivity values of G. intraradices. Paenibacillus favisporus strain TG1R2 caused suppression of the parameters evaluated for G. intraradices during in vitro symbiotic stages, but not under in vivo conditions. The extraradical mycelium network produced and the colonization of soybean roots by G. intraradices were promoted compared to the control treatments. In addition, dual inoculation had a promoting effect on soybean biomass production. In summary, species of Paenibacillus associated with AM fungus structures in the soil, may have a promoting effect on short term pre-symbiotic mycelium development, and little impact on AM propagule germination. These findings could explain the associations found between some bacterial strains and AM fungus propagules.  相似文献   

11.
Physiological responses to acid stress in two strains of Rhizobium leguminosarum bv trifolii of differing acid-soil tolerance were compared. Acidity affected the size and morphology of the acid-tolerant strain, WSM409, but not of the acid-sensitive strain, TA1. Acid grown cells of WSM409 and TA1 had less cell-associated Ca and Mg and more P than cells grown at pH 7.0. Potassium content was lower in acid grown cells; WSM409 was less affected by pH than that in TA1. WSM409 was more tolerant of pH shock at pH 3.5 when grown at pH 4.8 than when grown at pH 7.0. TA1 was more sensitive to pH shock when grown at pH 4.8 than when grown at pH 7.0. WSM409 shows a characteristic adaptive acid tolerance response, whereas TA1 shows an acid sensitive response.  相似文献   

12.
To quantify the contribution of biological nitrogen fixation (BNF) to legume crops using the 15N natural abundance technique, it is necessary to determine the 15N abundance of the N derived from BNF—the B value. In this study, we used a technique to determine B whereby both legume and non-N2-fixing reference plants were grown under the same conditions in two similar soils, one artificially labelled with 15N, and the other not. The proportion of N derived from BNF (%Ndfa) was determined from the plants grown in the 15N-labelled soil and it was assumed that the %Ndfa values of the legumes grown in the two soils were the same, hence the B value of the legumes could be calculated. The legumes used were velvet bean (Mucuna pruriens), sunnhemp (Crotalaria juncea), groundnut (Arachis hypogaea) and soybean (Glycine max) inoculated, or not, with different strains of rhizobium. The values of %Ndfa were all over 89%, and all the legumes grown in unlabelled soil showed negative δ15N values even though the plant-available N in this soil was found to be approximately +6.0‰. The B values for the shoot tissue (Bs) were calculated and ranged from approximately −1.4‰ for inoculated sunnhemp and groundnut to −2.4 and −4.5‰ for soybean inoculated with Bradyrhizobium japonicum strain CPAC 7 and Bradyrhizobium elkanii strain 29W, respectively. The B (Bwp) values for the whole plants including roots, nodules and the original seed N were still significantly different between the soybean plants inoculated with CPAC 7 (−1.33‰) and 29W (−2.25‰). In a parallel experiment conducted in monoxenic culture using the same soybean variety and Bradyrhizobium strains, the plants accumulated less N from BNF and the values were less negative, but still significantly different for soybean inoculated with the two different Bradyrhizobium strains. The results suggest that the technique utilized in this study to determine B with legume plants grown in soil in the open air, yields B values that are more appropriate for use under field conditions.  相似文献   

13.
Some legume species of the Crotalaria genus are specifically nodulated by methylotrophic bacteria belonging to the Methylobacterium nodulans species. The feature of this symbiotic bacterium is its ability to oxidize methanol, a property based on the presence of a methanol dehydrogenase enzyme. Despite a good knowledge of this property and its implication in symbiosis, the molecular dialogue between M. nodulans and crotalaria podocarpa leading to symbiosis is largely unknown, except the presence of a nodA nodulation gene in the genome of M. nodulans ORS 2060. To investigate if M. nodulans ORS 2060 produces Nod factors, molecules considered as the major bacteria-to-plant signals essential for the establishment of rhizobia–legume symbiosis, we identified and sequenced a nodDABCUIJHQ cluster from a genomic library of ORS 2060. Phylogenetic analyses of nod genes revealed that M. nodulans ORS 2060 form a branch together with Burkholderia tuberum STM678 and a strain of Methylobacterium sp. (4-46) isolated from Lotononis, and distinct from all the other rhizobia. To analyse the regulation of ORS 2060 nod genes, we constructed a nodA–LacZ promoter fusion to monitor the nod gene expression with various flavonoids. The flavone apigenin was found to be the strongest inducer of nod gene expression in M. nodulans ORS 2060. This latter flavonoid was used to induce ORS 2060, and Nod factors were purified by high-performance liquid chromatography (HPLC) and further characterized by mass spectrometry. One major Nod factor structure was identified as a pentamer of chitin substituted by C18:1 or C16:0 acyl chains on the non-reducing end and 6-O-sulphated on the other end, suggesting a classic symbiotic dialogue between M. nodulans and C. podocarpa.  相似文献   

14.
Phaseolus vulgaris is a legume extensively cultivated in Spain, León province being the most important producer. This province produces selected varieties of common bean highly appreciated by their quality that warrants a Protected Geographic Indication (PGI). In this work we analysed the rhizobia present in nodules of the variety “Riñón” in several soils from León province in order to select native rhizobial strains to be used as biofertilizers. The analysis of rrs and housekeeping genes of these strains showed that they belong to two phylogenetic groups within Rhizobium leguminosarum (I and II). Although the group II strains were most abundant in nodules, very effective strains were also found in group I. Strains LCS0306 from group I and LBM1123 from group II were the best nitrogen fixers among all strains isolated and were selected for field experiments. The field research showed that the biofertilization of common bean with native and selected rhizobial strains can completely replace the fertilization with chemical N fertilizers. The biofertiliser designed in such way, was valid for the whole agroecological area, regardless the specific properties of each soil and microclimatic conditions. This conclusion can be generalised as a strategy for the development of biofertilisers in different agroecological conditions worldwide.  相似文献   

15.
In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize monoculture; arable land and arable land converted into grassland. Burkholderia isolates obtained on PCAT medium were grouped in 47 clusters using 16S ribosomal RNA gene based PCR-DGGE combined with BOX genomic fingerprinting (DGGE-BOX). The distribution of the isolates in the DGGE-BOX clusters was used to calculate the Shannon diversity index per treatment. Interestingly, we observed that the Burkholderia diversity was affected by changes in the agricultural management, since the highest diversity was observed in permanent grassland and in continuous arable land. In addition, the diversity tended to be higher in the rhizosphere than in the corresponding bulk soil. The use of species abundance models indicated that rhizosphere communities had more even distributions than communities collected from the bulk soil. Identification of isolates revealed that only 2% of these belonged to the B. cepacia complex and that the majority was assigned to either (1) new Burkholderia species or (2) Burkholderia species that had originally been isolated from soil. Isolates classified as B. hospita, B. caledonica and Burkholderia sp. ‘LMG 22934’ and ‘LMG 22936’ were found mainly in the arable land, while isolates belonging to Burkholderia sp. ‘LMG 22929’ and B. phytofirmans were associated with the grassland area. Another potentially new Burkholderia species, ‘LMG 22932’, was found in both areas, in close association with the maize rhizosphere.  相似文献   

16.
Bacteria were isolated from root-nodules collected from indigenous legumes at 38 separate locations in the Gascoyne and Pilbara regions of Western Australia. Authentication of cultures resulted in 31 being ascribed status as root-nodule bacteria based upon their nodulation of at least one of eight indigenous legume species. The authenticated isolates originated from eight legume genera from 19 sites. Isolates were characterised on the basis of their growth and physiology; 20 isolates were fast-growing and 11 were slow-growing (visible growth within 3 and 7 d, respectively). Fast-growers were isolated from Acacia, Isotropis, Lotus and Swainsona, whilst slow-growers were from Muelleranthus, Rhynchosia and Tephrosia. Indigofera produced one fast-growing isolate and seven slow-growing isolates. Three indigenous legumes (Swainsona formosa, Swainsona maccullochiana and Swainsona pterostylis) nodulated with fast-growing isolates and four species (Acacia saligna, Indigofera brevidens, Kennedia coccinea and Kennedia prorepens) nodulated with both fast- and slow-growing isolates. Swainsona kingii did not form nodules with any isolates. Fast-growing isolates were predominantly acid-sensitive, alkaline- and salt-tolerant. All slow-growing isolates grew well at pH 9.0 whilst more than half grew at pH 5.0, but all were salt-sensitive. All isolates were able to grow at 37 °C. The fast-growing isolates utilised disaccharides, whereas the slow-growing isolates did not. Symbiotic interactions of the isolates were assessed on three annual, one biennial and nine perennial exotic legume species that have agricultural use, or potential use, in southern Australia. Argyrolobium uniflorum, Chamaecytisus proliferus, Macroptilium atropurpureum, Ononis natrix, Phaseolus vulgaris and Sutherlandia microphylla nodulated with one or more of the authenticated isolates. Hedysarum coronarium, Medicago sativa, Ornithopus sativus, Ornithopus compressus, Trifolium burchellianum, Trifolium polymorphum and Trifolium uniflorum did not form nodules. Investigation of the 31 authenticated isolates by polymerase chain reaction with three primers resulted in the RPO1 primer distinguishing 20 separate banding patterns, while ERIC and PucFor primers distinguished 26 separate banding patterns. Sequencing the 16S rRNA gene for four fast- and two slow-growing isolates produced the following phylogenetic associations; WSM1701 and WSM1715 (isolated from Lotus cruentus and S. pterostylis, respectively) displayed 99% homology with Sinorhizobium meliloti, WSM1707 and WSM1721 (isolated from Sinorhizobium leeana and Indigofera sp., respectively) displayed 99% homology with Sinorhizobium terangae, WSM1704 (isolated from Tephrosia gardneri) shared 99% sequence homology with Bradyrhizobium elkanii, and WSM1743 (isolated from Indigofera sp.) displayed 99% homology with Bradyrhizobium japonicum.  相似文献   

17.
This study tested the competitive ability of three locally isolated Cyclopia rhizobia and strain PPRICI3, the strain currently recommended for the cultivation of Cyclopia, a tea-producing legume. Under sterile glasshouse conditions, the three locally isolated strains were equally competitive with strain PPRICI3. In field soils, the inoculant strains were largely outcompeted by native rhizobia present in the soil, although nodule occupancy was higher in nodules growing close to the root crown (the original inoculation area). In glasshouse experiments using field soil, the test strains again performed poorly, gaining less than 6% nodule occupancy in the one soil type. The presence of Cyclopia-compatible rhizobia in field soils, together with the poor competitive ability of inoculant strains, resulted in inoculation having no effect on Cyclopia yield, nodule number or nodule mass. The native rhizobial population did not only effectively nodulate uninoculated control plants, they also out-competed introduced strains for nodule occupancy in inoculated plants. Nonetheless, the Cyclopia produced high crop yields, possibly due to an adequate supply of soil N.  相似文献   

18.
The behaviour of Rhizobium strains introduced separately into soil from a contaminated site with high concentrations of heavy metals (mainly Zn and Hg), and the role of plasmids in the ecology of these rhizobia strains were studied. Six Rhizobium leguminosarum biovar trifolii strains, from different sources and with different plasmid contents, were selected. Two of them were isolated from nodules of subterranean clover plants (Trifolium subterraneum) grown in the contaminated soil and four were from an uncontaminated soil. After inoculation with approximately 107 cells g−1 soil, of each strain, survival and plasmid stability were assessed over a period of 12-18 months. Differences in survival of Rhizobium strains were only detected more than 12 months after inoculation. After 18 months it was clear that survival in contaminated soil was greatest in the two strains originally isolated from that contaminated soil, and also by two of the strains originally isolated from uncontaminated soil. The latter two strains were also the only ones that showed changes in their plasmid profiles. The remaining isolates had the lowest populations, and their plasmid profiles were unchanged and similar to the parent strains.  相似文献   

19.
Fertilizer costs are a major component of corn production. The use of biofertilizers may be one way of reducing production costs. In this study we present isolation and identification of three plant growth promoting bacteria that were identified as Enterobacter cloacae (CR1), Pseudomonas putida (CR7) and Stenotrophomonas maltophilia (CR3). All bacterial strains produced IAA in the presence of 100 mg l−1 of tryptophan and antifungal metabolites to several soilborne pathogens. S. maltophilia and E. cloacae had broad spectrum activity against most Fusarium species. The only strain that was positive for nitrogen fixation was E. cloacae and it, and P. putida, were also positive for phosphate solubilization. These bacteria and the corn isolate Sphingobacterium canadense CR11, and known plant growth promoting bacterium Burkholderia phytofirmans E24 were used to inoculate corn seed to examine growth promotion of two lines of corn, varieties 39D82 and 39M27 under greenhouse conditions. When grown in sterilized sand varieties 39M27 and 39D82 showed significant increases in total dry weights of root and shoot of 10-20% and 13-28% and 17-32% and 21-31% respectively. Plants of the two varieties grown in soil collected from a corn field had respective increases in dry weights of root and shoot of 10-30% and 12-35% and 11-19% and 10-18%. In sand, a bacterial mixture was highly effective whereas in soil individual bacteria namely P. putida CR7 and E. cloacae CR1 gave the best results with 39M27 and 39D82 respectively. These isolates and another corn isolate, Azospirillum zeae N7, were tested in a sandy soil with a 55 and 110 kg ha−1 of nitrogen fertility at the Delhi research Station of Agriculture and Agri-Food Canada over two years. Although out of seven bacterial treatments, no treatment provided a statistically significant yield increase over control plots but S. canadense CR11 and A. zeae N7 provided statistically significant yield increase as compared to other bacteria. The 110 kg rate of nitrogen provided significant yield increase compared to the 55 kg rate in both years.  相似文献   

20.
The Medicago sativa-Sinorhizobium symbiosis is challenged by acidity, resulting in generally poor nodulation and production. Medicago murex, however, can nodulate and grow at low pH. The effect of low pH on signal exchange in the Sinorhizobium-Medicago symbiosis was studied to gain a greater understanding of the basis for poor nodulation of M. sativa compared to M. murex. Root exudates from M. sativa and M. murex grown in buffered nutrient solution at pH 4.5, 5.8 and 7.0, were collected to measure the expression of nodB induction in Sinorhizobium. A nodB-gusA fusion was constructed and inserted into Sinorhizobium medicae strains WSM419 (acid tolerant) and CC169 (acid sensitive). We identified greater induction by root exudates from both Medicago spp. collected at pH 4.5 than at pH 5.8 and 7.0, less induction by M. murex than M. sativa and less induction of WSM419 than CC169. The same major inducing compounds, 4′,7-dihydroxyflavanone (liquiritigenin), 4′,7-dihydroxyflavone, and 2′,4′,4-trihydroxychalcone (isoliquiritigenin), were identified in exudates of M. murex and M. sativa at all pH values, although in increasing amounts at lower pH. Poor nodulation of M. sativa relative to M. murex under acid conditions is not the consequence of decreased induction of Sinorhizobium nodB by chemical inducers present in the root exudates of both species at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号