首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The artificial chromophoric substrate analog of phytic acid, 5-O-[6-(benzoylamino)hexyl]-d-myo-inositol-1,2,3,4,6-pentakisphosphate (T-IP5), may prove useful in measuring soil phytase activity. This chemical probe allows for direct measurement of phytase-catalyzed dephosphorylation (i.e., hydrolysis of the phosphoester bond) using high-performance liquid chromatography with UV detection. Before T-IP5 can be used to measure phytase activity in environmental samples (soil, stream sediment, manure) refinement of the T-IP5 probe methodology is required. Using 31P nuclear magnetic resonance (NMR) spectroscopy, we identified 5-O-[6-(benzoylamino)hexyl]-d-myo-inositol-trisphosphate (T-IP3) as the key intermediate that accumulates during phytase-catalyzed dephosphorylation of T-IP5. An improved HPLC method for separation of reactants is also presented.  相似文献   

2.
myo‐Inositol hexakisphosphate (phytate) is widely regarded as an abundant form of soil organic phosphorus (P) in many soils. Its abundance is believed to be because of its resistance to microbial degradation. We examined the fate of phytate added to a calcareous soil as a solution at a concentration of 58 mg P kg−1, with and without the addition of wheat straw. The soil was incubated for 13 weeks, with phytate concentrations determined at 0, 1, 4, 7 and 13 weeks using NaOH‐EDTA soil extraction followed by 31P nuclear magnetic resonance (NMR) spectroscopy. The phytate concentration declined rapidly, with 18% (phytate + wheat straw) and 12% (phytate) of the initial phytate remaining after 13 weeks. This coincided with an increase in the proportion of orthophosphate relative to total NaOH‐EDTA extractable P (from 65 to 81%) and a small increase in α‐ and β‐glycerophosphate concentration, providing evidence for the microbial degradation of phytate. The decrease in phytate concentration was consistent with a first‐order decay with a half‐life for phytate of 4–5 weeks. This study demonstrates that in the calcareous soil examined, phytate was not highly stable, but a potentially biologically available form of P. In order to quantify the concentration of P species, we developed an improved method of spectral deconvolution. This method accounted for a broad signal (3.5–6.5 ppm) in the monoester region of the spectra that represented up to 23% of the total extractable P. We found that when this broad signal was not included, phytate concentrations were over‐estimated by up to 54%.  相似文献   

3.
The recent identification of scyllo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy allowed us to investigate this compound in soils by re-analyzing spectra from two previously published studies. Concentrations of scyllo-inositol hexakisphosphate in 29 temperate pasture soils from England and Wales ranged between 11 and 130 mg P kg−1 soil and accounted for between 4 and 15% of the soil organic phosphorus. The ratio of scyllo-inositol hexakisphosphate to myo-inositol hexakisphosphate ranged between 0.29 and 0.79. In a 10 month pot experiment with six grassland soils from New Zealand, growth of pine seedlings (Pinus radiata D. Don) decreased scyllo-inositol hexakisphosphate concentrations by between 10 and 46%. Growth of ryegrass (Lolium perenne L.) decreased scyllo-inositol hexakisphosphate in three low-nutrient soils by 5-21%, but increased it in three other soils by 11-16%. We conclude that scyllo-inositol hexakisphosphate is an important component of soil organic phosphorus with potential ecological significance.  相似文献   

4.
施磷水平对晋南旱地冬小麦产量及磷素利用的影响   总被引:19,自引:0,他引:19  
在自然降水条件下, 通过大田试验研究了施磷量对晋南旱地冬小麦部分抗性指标、产量、磷素利用率以及1 m土壤磷素形态分布特征的影响。结果表明: 施磷可以提高旱地冬小麦抗逆性、穗数, 进而提高产量, 但对穗粒数和千粒重影响不明显。在0~120 kg(P2O5)·hm-2施磷范围内, 小麦生育期旗叶硝酸还原酶(NR)活性、穗数和产量随施磷量增加显著增加, 丙二醛(MDA)和脯氨酸(Pro)含量随施磷量增加显著降低。当施磷量达到180 kg(P2O5)·hm-2时, 旗叶中MDA、Pro含量降低幅度较小, 甚至会升高; NR活性除抽穗期外不再有显著变化, 穗数和产量变化亦不显著。磷素施入土壤后易固定, 导致磷肥利用率偏低, 当季回收率仅为9%~13%, 以施磷60~120 kg(P2O5)·hm-2为最高。1 m土壤各土层Hedley形态磷分布特征表现为: HCl-Pi>Residual-P> HCl-Po>NaOH-Pi>NaHCO3-Pi>NaOH-Po>H2O-Pi>NaHCO3-Po>H2O-Po, 其中以HCl-P和Residual-P为主, 分 别占全磷的75%和20%左右, H2O-P、NaHCO3-P和NaOH-P含量共占全磷的5%左右。施入土壤中的磷素当 季主要被固定在0~20 cm土层, 不同Hedley形态磷增加量总体在0~39.11 mg·kg-1之间, 且施磷越多, 被固定磷素就越多。综合考虑冬小麦抗逆性、产量及磷素利用率, 当地旱作冬小麦施磷量(P2O5))以120 kg·hm-2左右为宜。  相似文献   

5.
Many soil microorganisms are able to transform insoluble forms of phosphorus to an accessible soluble form, contributing to plant nutrition as plant growth-promoting microorganisms (PGPM). The objective of this work was to isolate, screen and evaluate the phosphate solubilization activity of microorganisms in maize rhizosphere soil to manage soil microbial communities and to select potential microbial inoculants. Forty-five of the best isolates from 371 colonies were isolated from rhizosphere soil of maize grown in an oxisol of the Cerrado Biome with P deficiency. These microorganisms were selected based on the solubilization efficiency of inorganic and organic phosphate sources in a modified Pikovskaya's liquid medium culture containing sodium phytate (phytic acid), soybean lecithin, aluminum phosphate (AlPO4), and tricalcium phosphate (Ca3(PO4)2). The isolates were identified based on nucleotide sequence data from the 16S ribosomal DNA (rDNA) for bacteria and actinobacteria and internal transcribed spacer (ITS) rDNA for fungi. Bacteria produced the greatest solubilization in medium containing tricalcium phosphate. Strains B17 and B5, identified as Bacillus sp. and Burkholderia sp., respectively, were the most effective, mobilizing 67% and 58.5% of the total P (Ca3(PO4)2) after 10 days, and were isolated from the rhizosphere of the P efficient L3 maize genotype, under P stress. The fungal population was the most effective in solubilizing P sources of aluminum, phytate, and lecithin. A greater diversity of P-solubilizing microorganisms was observed in the rhizosphere of the P efficient maize genotypes suggesting that the P efficiency in these cultivars may be related to the potential to enhance microbial interactions of P-solubilizing microorganisms.  相似文献   

6.
  • 1 The dependence of the morphology of the maize (Zea mays L.) seminal root system on physical, chemical and biotic parameters was investigated with pot cultures in quartz sand and in a natural loamy sand soil. Low O2-supply to the soil resulted in a substantially smaller root biomass despite a relative increase in total root length. Reduced N-supply also stimulated root length growth, but also enhanced the formation of laterals. The presence of soil microorganisms, in comparison to sterile cultures, resulted in a reduced length of the main roots, and the production of slender laterals with a decreased root hair density. Generally, the structural variability of laterals in response to different growth conditions was much more pronounced than that of the main roots.
  • 2 A major part of the work reported here was dedicated to a detailed study of phosphate (P) acquisition by the maize root system under field conditions. Radioactive labelling of the roots and radioautography of soil cores revealed the in situ distribution pattern of the maize root system. Controlled labelling of the soil with radioactive phosphate allowed the documentation of the development and replenishment of the phosphate depletion zone around roots. Finally, the longevity and phosphate uptake activity of the different parts and tissues of the primary root system of maize was examined by electron microscopy and tracer studies including pulse chase experiments. From these studies the phosphate-acquiring strategy of the maize root system appears as follows: The capability of P uptake decreases in the order: root hairs, 1st order laterals, 2nd order laterals, main root. The life-spans of the components of the maize root system increase by the sequence: root hairs, laterals, main root. Inorganic P uptake, therefore, mainly occurs during the first weeks of root development. Dying back of the root occurs in an ordered manner resulting in a relocation of stored P predominantly into the main root cortex. Furthermore, it could be shown that competition for P between roots of the same or of adjacent maize and/or lupin plants virtually does not occur in situ.
  • 3 The utilization of phytate-P was studied with 14C/32P-labelled Camyo-inositol-hexaphosphate supplied to maize plants grown in sterile quartz sand or in hydroponic cultures. The ratio of P- and C-uptake as well as the incidence of phytate hydrolysis products in the rooting medium indicated the capability of maize roots to acquire P from phytate by enzymatic hydrolysis. This was confirmed by enzyme studies of the root tissues. A specific hydrolyzing enzyme (phytase; molecular weight 51 kD) could be detected in the cell wall of the root, especially in the root tip, which initiates phytate dephosphorylation. Further breakdown is presumably accomplished by monophosphoric phosphohydrolases.
  相似文献   

7.
施磷处理对中性紫色土土壤硝化作用的影响   总被引:1,自引:0,他引:1  
针对长期定位试验站长期不施化肥的低磷土壤,设置了不同水平的磷素添加共9个处理(P2O5 0~150 mg kg-1土),通过75 d的室内培养实验,探讨磷素处理对土壤硝化细菌及硝化作用的影响。结果表明,适量磷素添加显著刺激了硝化细菌生长,但高浓度磷素添加将抑制硝化细菌数量。进一步通过好氧培养法和悬液法分别测定了土壤硝化潜势,发现不同水平的磷素短期培养后,土壤硝化潜势均出现不同幅度的增加,并且均在P2O5 40~60 mg kg-1土之间最高,但磷素供应水平影响硝化作用的机制仍待进一步研究。  相似文献   

8.
A pot experiment was conducted to determine the effects of chickpea/wheat intercropping and two phosphorus (P) sources on soil acidification and to explore a new way of ameliorating soil acidification. Wheat and chickpea roots were grown in compartments separated either by a solid barrier to prevent any root interactions or by a nylon mesh (30 μm) to permit partial root interactions, or with no separation between the compartments. Two P sources were applied at 60 mg P kg?1 soil either as sodium phytate or ferrous phosphate (FePO4). The decline of soil pH after growing plants for 42 days was alleviated by supplying organic P or intercropping while receiving organic P. The ameliorating of soil acidification resulted mainly from a decrease in excess cations over anion uptake of both wheat and chickpea under phytate supply, compared to FePO4 supply. The excess cation uptake of chickpea was reduced by root interactions.  相似文献   

9.
The phosphate fixation capacity at pH 4.5 and an equilibrium concentration of 250 mM phosphate was measured. The soil samples were divided into five groups according to their clay mineralogical composition. The first group soils contain opaline silica and allophanelike constituents, and some unidentified minerals, the second opaline silica and crystalline layer .i1icates, the third opaline silica and crystalline layer silicates with additional allophanelike constituents or aluminarich gel-like materials, the fourth allophanelike constituents, allophane and imogolite and the fifth crystalline layer silicates, allophanelike constituents and alumina-rich gel-like materials, plus some halloysite-like minerals, respectively. The first group soils had phosphate fixation capacities of 3,000 to 8,000, the second group soils 1,000 to 3,000, the third group loib 2,000 to 13,000, the fourth group soils 8,000 to 15,000 and the fifth group soil. 5,000 to 12,000 mg P2O5/100 g oven-dry soil, respectively. The fourth group soils in which allophane and imogolite predominated showed the highest phosphate fixation capacity.

The fractions which dissolved from almost all soil samples by treatments with 6% H2O2 Na2S2O4-NaHCO2-Na citrate and 2% Na2CO3 were estimated to have very high phosphate fixation capacities (8,000 to 19,000 mg P2O5/100 g dry-matter), and there was not much difference among the soil samples examined. Iron and aluminum combined with humus, allophanelike constituents, alumina-rich gel-like materials and halloysite-like minerals in addition to allophane and imogolite contribute to the phosphate fixation of Ando soils.  相似文献   

10.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

11.
Phosphorus (P) cycles rapidly in lowland tropical forest soils, but the process have been proven difficult to quantify. Recently it was demonstrated that valuable data on soil P transformations can be derived from the natural abundance of stable oxygen isotopes in phosphate (δ18OP). Here, we measured the δ18OP of soils that had received long-term nutrient additions (P, nitrogen, and potassium) or litter manipulations in lowland tropical forest in Panama and performed controlled incubations of fresh soils amended with a single pulse of P. To detect whether δ18OP values measured in the incubations apply also for soils in the field, we examined the δ18OP values after rewetting dry soils. In the incubations, resin-P δ18OP values converged to ∼3.5‰ above the expected isotopic equilibrium with soil water. This contrasts with extra-tropical soils in which the δ18OP of resin-P matches the expected equilibrium with soil water. Identical above-equilibrium resin-P δ18OP values were also found in field soils that did not receive P additions or extra litter. We suggest that the 3.5‰ above-equilibrium δ18OP values reflect a steady state between microbial uptake of phosphate (which enriches the remaining phosphate with the heavier isotopologues) and the release of isotopically equilibrated cell internal phosphate back to the soil. We also found that soil nutrient status affected the microbial turnover rate because in soils that had received chronic P addition, the original δ18OP signature of the fertilizer was preserved for at least eight weeks, indicating that the off-equilibrium δ18OP values produced during microbial phosphate turnover was not imprinted in these soils. Overall, our results demonstrate that ongoing microbial turnover of phosphate mediates its biological availability in lowland tropical soils.  相似文献   

12.
Determination of Economical Optimum of Phosphate Fertilization on Loess and Loamy Soils 82 field trials with phosphate fertilizers on loess and loamy soils were evaluated to find out the economical optimum of fertilization. The evaluation in each trial was done by using the exponential function according to Mitscherlich with respect of profits and costs for yields and fertilizers. The result of this evaluation was, applied to the named soils, that the yield level has essential influence on the economical optimum of fertilization. Likewise the optimal P2O5 (CAL)-value in the soil is dependent on the yield level (CAL-value of group C), (Tab. 7). Accumulation of phosphate in soil caused by semi-liqued manure, magnesium content in soil, pH-value, and rainfall have a significant influence on the effect of mineral phosphate fertilization and on the reliability of prediction as well. Optimising resp. considering these factors and others are of supposition for exact evaluation of trials, for reasonable recommendation of both fertilization and threshold P2O5 (CAL)-value, and for critical examination of methods of soil analysis.  相似文献   

13.
A field experiment was conducted to determine the number of soil samples required to estimate the average residual soil nitrate (NO3 -) in a given field under no-till and conventional tillage conditions. Four soil sampling devices (a 20.3-cm power earth auger, a 5.1-cm hand earth auger, a 3.2-cm soil probe, and a 1.9-cm soil probe) were used to collect soil samples from 35 locations each within the conventionally tilled and no-till fields. Soil samples were analyzed for soil water contents and NO3 - concentrations in the soil for various depths. Simple graphs and tables were constructed which could be used by farmers and other professionals for estimating the average residual soil NO3 - contents at a given confidence level or with a certain degree of risk. The confidence interval was taken as the difference between the highest and lowest value of the quartile range of the observed data. The results of this study indicated that the number of soil samples required to estimate the average residual soil NO3 - contents increased as the degree of risk decreased. This study also indicated that the number of soil samples required for making a reasonable estimate of the residual soil NO3 - contents were greater for a no-till field compared with the conventional tillage field.  相似文献   

14.
Abstract

The capacity of 36 Western Australian soils to adsorb phosphorus (P) was measured by three different methods: P retention index (PRI), P buffering capacity (PBC), and P adsorption (PA). The P adsorption values measured by all three methods varied markedly with soil type. When the P adsorption values were correlated with several soil properties, using simple and multiple linear regressions, PRI, PBC, or PA values were found to be significantly correlated with the aluminium oxide content of the soils. In addition, PBC and PRI was correlated with organic carbon content. The role of aluminium oxide (Al2O3) in the soil was apparently more important in determining the P adsorption capacity of the soils than that of iron (Fe), even though the iron oxide (Fe2O3)content of all the soils studied was consistently higher than the aluminium oxide content. The relationship between P adsorption and the selected soil properties, as determined by multiple linear regression, explained 45–59% of the variation: arabic PRI = ‐10.87 + 9.94 organic C (%) + 160.02 Al2O3 (%), r2 = 0.45.

arabic PBC = ‐0.004 + 1.532 organic C (%) + 22.26 Al2O3 (%), r2 = 0.57.

arabic PA = 3.52 + 248.75 Al2O3 (%), r2 = 0.59.

  相似文献   

15.
Properties of diphenol oxidases extracted from salts. Salmine and SP-Sephadex C-25 were used to separate the enzyme system associated with humic materials in the neutral extracts of fresh soils (NAFS Extract). Electrophoresis on polyacrylamide gel shows that this preparation is heterogeneous. The elementary analysis of the soil enzyme is C 43·13%; N 5·09%; H 7·21%; O 44·58%. Chromatographic analyses indicate that the soil enzyme contains 53 per cent amino acids, 36 per cent sugars and amino sugars and 10 per cent ammonium and inorganic materials. The soil enzyme has a maximum absorption at 270–280 nm. The soil enzyme degrades the following substrates at the relative rate mentioned in parentheses : d-catechin (298);p-cresol (251); catechol (156); dl-DOPA (100);p-phenylene diamine (59);p-quinol (20) in terms of rate of oxygen absorption. This enzymatic preparation has the properties of an o- and p-diphenol oxidase. The rate of decarboxylation was measured using a radiorespirometer. The following relative values are dl-DOPA-l-14C (100); dl-tyrosine-l-14C (35) ; dl-tyrptophan-1-14C (7); dl-phenylalanine-l-14C (2). The dl-DOPA-2-14C was partially degraded to 14CO2. The O2 absorbed and CO2 (carboxyl) evolved in case of dl-DOPA was in the ratio of 1·8 at 37°C. The activation energy on dl-DOPA was 3·1 and 7·9 kcal/mole/°C for oxygen absorption and decarboxylation respectively. The enzymatic activity on dl-DOPA-l-14C was optimum in air and inhibited in a N2 atmosphere. Decarboxylation on dl-DOPA-l-14C followed the Michaelis-Menten law, from which we found that Km = 8·3 × 10?4M for decarboxylation. The oxidative decarboxylation was inhibited by H2O2 (74%); KCN (75%); ascorbate (92%); BAL (97%);DIECA(90%).Melanogenesis of dl-DOPA followed first order kinetics. The maximum absorption at 305 nm during melanogenesis shows the formation of dopachrome.  相似文献   

16.
The effect of potassium azide (KN3), O,O-diethyl O-(2-isopropyl-6-methyl-4-pyrimidinyl) phosphorothioate (diazinon), O,O-diethyl S-[(ethylthio)- methyl] phosphorodithioate (phorate), 1-naphthyl methylcarbamate (carbaryl), and p-chlorophenyl methylcarbamate (PCMC) on the biodegradation and persistence of several amide, carbamate, and urea herbicides in soil and microbial culture systems was examined. KN3 inhibited the biodegration of isopropyi m-chlorocarbanilate (chlorpropham) in both soil perfusion and microbial culture system, but was limited in increasing chlorpropham persistence in soil under greenhouse conditions. PCMC and diazinon, inhibited the metabolism of chlorpropham by isolated cultures of soil bacteria (Pseudonwnas striata Chester and Achromobacter sp). Phorate inhibited chlorpropham metabolism by P. striata, but did not inhibit chlorpropham metabolism by Achromobacter sp. Carbaryl, PCMC, and diazinon increased the persistence of chlorpropham in soil under greenhouse conditions. PCMC also inhibited the microbial metabolism of isopropyl carbanilate (propham), 3',4'-dichloropropionanilide (propanil), 2-chloro-N,N-diallylacetamide (CDAA), 1,1-dimethyl-3 (α,ga,α-trifluoro-m-tolyl)urea (fluometuron) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), but not that of 2-chloro-N-isopropylacetanilide (propachlor) in isolated culture systems.  相似文献   

17.
Elevated CO2 usually promotes plant growth, whereas elevated O3 often has a negative effect, especially on root biomass. Thus both these gases can indirectly affect the soil microbial community. We exposed Agrostis capillaris and Lathyrus pratensis to realistic levels of O3 (40-50 ppb) and CO2 (ambient air + 100 ppm) in open-top chambers during 2002-2004. The experiment shows negative effects of both O3 and CO2, especially on the bulk soil of L. pratensis, in terms of the decreased biomasses of total (25% and 31%), actinobacterial (29% and 31%), bacterial (26% and 33%) and mycorrhizal (AM fungal) (31% and 35%) indicator subgroups, analysed by the PLFA (phospholipid fatty acid) method. The fungal:bacterial PLFA biomass ratio decreased in the bulk soil of A. capillaris, especially with elevated CO2 alone (38%). These longer-term changes are considered to arise mainly from differences between the plant functional types (i.e. grass cf. N2-fixing legume) in litter quality and soil C:N ratio. The results also point to interactions and multi-trophic feedbacks between elevated O3, plant, parasitic rust fungi and soil readily available P, accompanied by a shift in N balance in favour of plants rather than soil microorganisms.  相似文献   

18.
A laboratory experiment was carried out to study the influence of 100 mg phosphorus pentoxide (P2O5) kg–1 soil from various phosphate sources on ammonia losses from soils amended with urea at 200 mg nitrogen (N) kg–1 soil. Irrespective of soil type, ammonia (NH3) loss was significantly greater from untreated soil (control) than from the soil treated with phosphorus (P) sources. A maximum decrease in ammonia loss (56%) was observed by applying phosphoric acid followed by triple and single superphosphate. Ammonia losses were significantly greater from sandy clay loam than from clay. Rate of ammonia volatilization was maximum during the first week of incubation and became undetectable for both soils at 21 days after incubation. The addition of phosphate sources significantly decreased pH in the sandy clay loam, but in the clay a significant decrease was observed only with the phosphoric acid addition. Addition of phosphate fertilizers was beneficial in reducing NH3 losses from urea.  相似文献   

19.
Acid sulfate soils (ASS) are characterized by low pH, aluminum (Al), and iron (Fe) toxicity and are typically deficient in phosphate (PO4). The application of phosphorus (P) fertilizer could help reduce the level of exchangeable Al and Fe, thereby improving the rice growth and yield. Five levels of P (0, 20, 40, 60 and 80 kg phosphorus pentoxide (P2O5)/ha) were tested with rice varieties MTL560 in the wet season and MTL480 in the dry season. The optimum rate of P was 60 kg P2O5/ha for rice in the dry season and 80 kg P2O5/ha in the wet season. Soil testing showed at the start of the season that there was sufficient P in the soil. At the end of the season there was a reduction in soil Al and Fe in plots that had P rates above 40 kg P2O5/ha. It is therefore likely that P application reduced Al and Fe toxicity through precipitation and formation of Al-P and Fe-P compounds, which boasted yield, rather amending a soil P deficiency.  相似文献   

20.
长期不同供磷水平下南方黄泥田生产力及磷组分特征   总被引:1,自引:0,他引:1  
红壤性水稻土磷素易受铁、铝等固定而有效性低,过量施用磷肥则产生磷素淋失风险,研究不同供磷水平下黄泥田生产力、磷库平衡及磷组分特征,可为磷素高效管理提供依据。本研究基于福建黄泥田连续30年的供磷定位试验,研究连续30年3个供磷水平下[不施磷肥(CK)、30 kg(P_2O_5)·hm~(-2)(P1)、60 kg(P_2O_5)·hm~(-2)(P2)]水稻(1987—2004年为双季稻,2005年始种植单季稻)产量演变规律,并于试验的第31年分析土壤有效磷、全磷、无机磷库与有机磷库组分变化。结果表明,连续30年施用磷肥,与CK相比,早稻、晚稻与单季稻历年平均产量P1处理分别提高64.9%、37.0%与19.9%, P2处理分别提高67.0%、41.2%与20.4%,差异均显著。不同稻作制度下黄泥田磷肥的增产效果为早稻晚稻单季稻。与P1处理相比,P2处理第31年土壤有效磷含量提高190.5%,全磷含量提高32.4%,差异均显著;Al-P、Fe-P、Ca-P含量与无机磷含量均显著提高,Al-P、Fe-P占无机磷比重分别提高2.12个百分点与4.40个百分点,但O-P比重降低9.45个百分点,差异均显著。施磷肥总体提高了活性有机磷(LOP)与中等活性有机磷(MLOP)含量,降低了高稳定性有机磷(HSOP)含量,P2处理表现尤为明显;增施磷肥, LOP与MLOP占有机磷比重增加, HSOP比重降低。籽粒或秸秆产量与Al-P、Fe-P、Ca-P、MLOP、LOP含量呈显著正相关。综上,黄泥田连续30年施磷肥增产效果明显, P1与P2处理的产量无显著差异,但P1处理呈现磷表观亏缺。增施磷肥提高了无机磷Al-P、Fe-P、Ca-P比重,有机磷组分呈现由活性较低的形态向活性较高的形态转化趋势。每茬60 kg(P_2O_5)·hm~(-2)可维持磷素养分表观平衡并保持适宜的有效磷水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号