首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order kinetics. These models fail to describe and predict such interactions as priming effects (PEs), which are short-term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if decomposition rate depends not only on size of the SOM pool, but also on microbial biomass and its activity, then PE can be simulated. A simple model that included these interactions and that consisted of three C pools - SOM, microbial biomass, and easily available C - was developed. The model was parameterized and evaluated using results of 12C-CO2 and 14C-CO2 efflux after adding 14C-labeled glucose to a loamy Haplic Luvisol. Experimentally measured PE, i.e., changes in SOM decomposition induced by glucose, was compared with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by considering both the total amount of microbial biomass and its activity. Because it separately described microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.The proposed PE model was compared with three alternative approaches with similar complexity but lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison showed that proposed new model best described typical PE dynamics in which the first peak of apparent PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential decomposition scheme of the new model, with immediate microbial consumption only of soluble substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption of two substrates with different decomposability. Incorporating microbial activity function in the model improved the fit of simulation results with experimental data, by providing the flexibility necessary to properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C and N dynamics in soil not only as a pool but also as an active driver of C and N turnover.  相似文献   

2.
匡崇婷  江春玉  李忠佩  胡锋 《土壤》2012,44(4):570-575
通过室内培育试验,研究了添加生物质炭对江西红壤水稻土有机碳矿化和微生物生物量碳、氮含量的影响。结果表明:红壤有机碳矿化速率在培育第2天达最大值后迅速降低,培养7天后下降缓慢并趋于平稳;添加生物质炭降低了土壤有机碳的矿化速率和累积矿化量,培养结束时,不加生物质炭的对照处理中有机碳的累积矿化量分别比添加0.5%和1.0%生物质炭的处理高10.0%和10.8%。此外,生物质炭的加入显著提高了土壤微生物生物量,添加0.5%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高111.5%~250.6%和11.6%~97.6%,添加1.0%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高58.9%~243.6%和55.9%~110.4%。相同处理中,干旱的水分条件下(40%田间持水量)微生物生物量要高于湿润的水分条件(70%田间持水量)。同时,添加0.5%和1.0%的生物质炭使土壤代谢熵分别降低2.4%和26.8%,微生物商减少了43.7%和31.7%。  相似文献   

3.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

4.
Many previous studies on transformation of low molecular weight organic substances (LMWOS) in soil were based on applying 14C and/or 13C labeled substances. Nearly all these studies used uniformly labeled substances, i.e. all C atoms in the molecule were labeled. The underlying premise is that LMWOS transformation involves the whole molecule and it is not possible to distinguish between 1) the flux of the molecule as a whole between pools (i.e. microbial biomass, CO2, DOM, SOM, etc.) and 2) the splitting of the substance into metabolites and tracing those metabolites within the pools.Based on position-specific14C labeling, we introduce a new approach for investigating LMWOS transformation in soil: using Na-acetate labeled with 14C either in the 1st position (carboxyl group, -COOH) or in the 2nd position (methyl group, -CH3), we evaluated sorption by the soil matrix, decomposition to CO2, and microbial uptake as related to both C atoms in the acetate. We showed that sorption of acetate occurred as a whole molecule. After microbial uptake, however, the acetate is split, and C from the -COOH group is converted to CO2 more completely and faster than C from the -CH3 group. Correspondingly, C from the -CH3 group of acetate is mainly incorporated into microbial cells, compared to C from the -COOH group. Thus, the rates of C utilization by microorganisms of C from both positions in the acetate were independently calculated. At concentrations of 10 μmol l−1, microbial uptake from soil solution was very fast (half-life time about 3 min) for both C atoms. At concentrations <100 μmol l−1 the oxidation to CO2 was similar for C atoms of both groups (about 55% of added substance). However, at acetate concentrations >100 μmol l−1, the decomposition to CO2 for C from -CH3 decreased more strongly than for C from -COOH.We conclude that the application of position-specifically labeled substances opens new ways to investigate not only the general fluxes, but also transformations of individual C atoms from molecules. This, in turn, allows conclusions to be drawn about the steps of individual transformation processes on the submolecular level and the rates of these processes.  相似文献   

5.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity.  相似文献   

6.
不同农田生态系统土壤微生物生物量碳的变化研究   总被引:18,自引:0,他引:18       下载免费PDF全文
试验研究不同农田生态系统土壤微生物生物量碳的变化结果表明,长期单施N、P肥处理对土壤有机碳和微生物生物量碳的影响不明显,施有机肥处理土壤微生物生物量碳及微生物生物量碳/有机碳值均高于其他施肥处理,轮作中引入豆科作物或豆科连作均对土壤微生物生物量碳的积累有显著作用。  相似文献   

7.
Microbial biomass C, ATP, and substrate-induced respiration were measured in the organic layers and the mineral A horizon of three beech forest soils with moder humus differing in Ca and Mg supply. Analyses of variance showed that horizon-specific differences explained most of the variance in the three microbial parameters. All three were significantly interrelated, with Spearman rank correlation coefficients of between 0.86 and 0.93. However, differences in the decline of these parameters with depth led to horizon-specific differences in their ratios. Thus, the ratios were not markedly interrelated. The mean ATP: microbial C ratio was 5.2 mol ATP g-1 C in the L 2 layer, 19.5 in the F layers, and 9.6 in the H and A horizons. The ratio of substrate-induced respiration to microbial C varied between 39.3 and 82.2 O2h-1 g-1 C in the F1 layers and between 5.3 and 32.1 l in the other layers. It is concluded that the use of different parameters can help to analyze both horizonand site-specific differences in microbial performance.  相似文献   

8.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   

9.
Estimates of soil microbial biomass are important for both comparative system analysis and mechanistic models. The method for measuring microbial biomass that dominates the literature is the chloroform fumigation incubation method (CFIM), developed on the premise that killed microorganisms are readily mineralized to CO2, which is a measure of the initial population. Factors that effect the CFIM have been thoroughly investigated over the last 15 years. A question that still remains after countless experiments is the use of an appropriate nonfumigated control for accounting for native soil organic matter (SOM) mineralization during incubation. Our approach was to add hot-water-leached 14C-labeled straw to both fumigated and nonfumigated samples assuming the straw would mimic a recalcitrant C substrate fraction of SOM. The ratio of the 14C evolved from the fumigated sample over the 14C evolved from the control sample would provide a corrected control value to be used in calculating microbial biomass. This experiment was conducted on soils from forest, agricultural, grassland and shrub-steppe ecosystems. The results clearly indicate that equal recalcitrant C mineralization during incubation is not a valid assumption. The results with these soils indicate than on the average only 20% of the control CO2 should be subtracted from the fumigated CO2 for the biomass calculation. The correction value ranged from 18% for agricultural soils to 25% for shrub-steppe soil, with the average correction value being 20%. Our experiments show that corrected biomass values will be 1.5–2 times greater than uncorrected biomass values. In addition using a corrected control improved the 1:1 correlation between the CFIM and SIR methods for these soils.  相似文献   

10.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

11.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

12.
While it is well known that soil moisture directly affects microbial activity and soil organic matter (SOM) decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on SOM decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45% and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils. On average a greater priming effect was found in the high soil moisture treatment (up to 76% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (up to 52% increase). Greater plant-derived CO2-C and plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher in the high moisture treatment than in the low moisture treatment after correcting for the effects of plant-derived CO2-C and plant biomass. The response to soil moisture particularly occurred in the sandy loam soil by the end of the experiment. Possibly, production of root exudates increased with increased soil moisture content. Root exudation of labile C may also have become more effective in stimulating microbial decomposition in the higher soil moisture treatment and sandy loam soil. Our results indicate that moisture conditions significantly modulate rhizosphere effects on SOM decomposition.  相似文献   

13.
During the first few days after rewetting of an air-dried soil (AD-RW), microbial activity increases compared to that in the original moist soil, causing increased mineralisation (a flush) of soil organic carbon (C) and other nutrients. The AD-RW flush is believed to be derived from the enhanced mineralisation of both non-biomass soil organic matter (due to its physical release and enhanced availability) and microbial biomass killed during drying and rewetting. Our aim was to determine the effects of AD-RW on the mineralisation of soil organic matter and microbial biomass during and after repeated AD-RW cycles and to quantify their proportions in the CO2-C flushes that resulted. To do this, a UK grassland soil was amended with 14C-labelled glucose to label the biomass and then given five AD-RW cycles, each followed by 7 d incubation at 25 °C and 50% water holding capacity. Each AD-RW cycle increased the amount of CO2-C evolved (varying from 83 to 240 μg g−1 soil), compared to the control with, overall, less CO2-C being evolved as the number of AD-RW cycles increased. In the first cycle, the amount of biomass C decreased by 44% and microbial ATP by 70% while concentrations of extractable C nearly doubled. However, all rapidly recovered and within 1.3 d after rewetting, biomass C was 87% and ATP was 78% of the initial concentrations measured prior to air-drying. Similarly, by 2 d, extractable organic C had decreased to a similar concentration to the original. After the five AD-RW cycles, the amounts of total and 14C-labelled biomass C remaining in the soil accounted for 60 and 40% of those in the similarly incubated control soil, respectively. Soil biomass ATP concentrations following the first AD-RW cycle remained remarkably constant (ranging from about 10 to 14 μmol ATP g−1 biomass C) and very similar to the concentration in the fresh soil prior to air-drying. We developed a simple mathematical procedure to estimate the proportion of CO2-C derived from biomass C and non-biomass C during AD-RW. From it, we estimate that, over the five AD-RW cycles, about 60% of the CO2-C evolved came from mineralisation of non-biomass organic C and the remainder from the biomass C itself.  相似文献   

14.
采用室内恒温通气培养法,以北京大棚蔬菜地土壤为研究对象,以未使用熏蒸剂土壤为对照,研究4种熏蒸剂[氯化苦(Pic)、1,3-二氯丙烯(1,3-D)、二甲基二硫(DMDS)和威百亩(MS)]对土壤可溶性氮素和微生物量碳、氮的影响。结果表明,4种熏蒸剂处理均能增加土壤中可溶性有机氮的含量,熏蒸处理后敞气0 d时,Pic、MS、DMDS和1,3-D处理的土壤可溶性有机氮累积量分别为47.55 mg·kg-1、42.15 mg·kg-1、40.34 mg·kg-1和32.02 mg·kg-1,较对照(29.97 mg·kg-1)分别增加58.67%、40.65%、34.61%和6.87%。敞气后14~84 d,Pic、DMDS和MS处理DON含量仍持续上升,1,3-D和对照变化不大,各处理之间DON含量差异显著。4种熏蒸剂处理后短时间内,土壤中可溶性氨基酸(DAA)与对照相比大幅上升,在熏蒸后7 d达到最大值,其中Pic处理的上升幅度最大,为12.87 mg·kg-1,对照DAA含量最低,为5.74 mg·kg-1。4种熏蒸剂处理之后,土壤中微生物量碳和氮均呈现急剧下降的趋势,其中Pic处理对微生物的杀灭作用最强,敞气后0 d,Pic处理的微生物量碳和微生物量氮含量分别比对照下降69.39%和70.95%,MS和DMDS次之,1,3-D的杀灭作用最弱。  相似文献   

15.
To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited.  相似文献   

16.
The aim of this work was to determine the magnitude of the priming effect, i.e. short-term changes in the rate (negative or positive) of mineralisation of native soil organic carbon (C), following addition of biochars. The biochars were made from Miscanthus giganteus, a C4 plant, naturally enriched with 13C. The biochars were produced at 350 °C (biochar350) and 700 °C (biochar700) and applied with and without ryegrass as a substrate to a clay-loam soil at pH 3.7 and 7.6. A secondary aim was to determine the effect of ryegrass addition on the mineralisation of the two biochars.After 87 days, biochar350 addition caused priming effects equivalent to 250 and 319 μg CO2-C g−1 soil, in the low and high pH soil, respectively. The largest priming effects occurred at the start of the incubations. The size of the priming effect was decreased at higher biochar pyrolysis temperatures, which may be a way of controlling priming effects following biochar incorporation to soil, if desired. The priming effect was probably induced by the water soluble components of the biochar. At 87 days of incubation, 0.14% and 0.18% of biochar700 and 0.61% and 0.84% of biochar350 were mineralized in the low and high pH soil, respectively. Ryegrass addition gave an increased biochar350 mineralisation of 33% and 40%, and increased biochar700 at 137% and 70%, in the low and high pH soils, respectively. Certainly, on the basis of our results, if biochar is used to sequester carbon a priming effect may occur, increasing CO2-C evolved from soil and decreasing soil organic C. However, this will be more than compensated for by the increased soil C caused by biochar incorporation. A similar conclusion holds for accelerated mineralisation of biochar due to incorporation of fresh labile substrates. We consider that our results are the first to unequivocally demonstrate the initiation, progress and termination of a true positive priming effect by biochar on native soil organic C.  相似文献   

17.
We report the first attempt to estimate fungal biomass production in soil by correlating relative fungal growth rates (i.e., acetate incorporation into ergosterol) with fungal biomass increase (i.e., ergosterol) following amendments with dried alfalfa or barley straw in soil. The conversion factor obtained was then used in unamended soil, resulting in fungal biomass productions of 10-12 μg C g−1 soil, yielding fungal turnover times between 130 and 150 days. Using a conversion factor from alfalfa-treated soil only resulted in two times higher estimates for biomass production and consequently lower turnover times. Comparing fungal biomass production with basal respiration indicated that these calculations overestimated the former. Still, the turnover times of fungal biomass in soil were in the same range as turnover times estimated in aquatic systems. The slow turnover of fungal biomass contrasts with the short turnover times found for bacteria. The study thus presents empirical data substantiating the theoretical division of bacteria and fungi into a fast and a slow energy channel, respectively, in the soil food web.  相似文献   

18.
Summary Maize plants were grown for 42 days in a sandy soil at two different mineral nutrient levels, in an atmosphere containing 14CO2. The 14C and total carbon contents of shoots, roots, soil and soil microbial biomass were measured 28, 35 and 42 days after germination. Relative growth rates of shoots and roots decreased after 35 days at the lower nutrient level, but were relatively constant at the higher nutrient level. In the former treatment, 2% of the total 14C fixed was retained as a residue in soil at all harvests while at the higher nutrient level up to 4% was retained after 42 days. Incorporation of 14C into the soil microbial biomass was close to its maximum after 35 days at the lower nutrient level, but continued to increase at the higher level. Generally a good agreement existed between microbial biomass, 14C contents and numbers of fluorescent pseudomonads in the rhizosphere. Numbers of fluorescent pseudomonads in the rhizosphere were maximal after 35 days at the lower nutrient level and continued to increase at the higher nutrient level. The proportions of the residual 14C in soil, incorporated in the soil microbial biomass, were 28% to 41% at the lower nutrient level and 20%6 – 30% at the higher nutrient level. From the lower nutrient soil 18%6 – 52%6 of the residual soil 14C could be extracted with 0.5 N K2SO4, versus 14%6 – 16% from the higher nutrient soil.Microbial growth in the rhizosphere seemed directly affected by the depletion of mineral nutrients while plant growth and the related production of root-derived materials continued.  相似文献   

19.
Biochemical composition of both intracellular (biomass) and extracellular soil organic matter was determined after extraction with 0.5 M K2SO4. Extractable carbon, hexoses, pentoses, total reducing sugars, ninhydrin-reactive nitrogen (NRN), proteins and DNA content were colorimetrically determined. The objective of the pilot study was to examine the information potential included in newly measured biochemical characteristics, their environmental variance and the relationships with main soil properties. Correlation analysis and PCA showed independence between biochemical parameters and physico-chemical properties of the soil. Thus, the parameters characterising biochemical composition of the soil biomass and extracellular matter seem to bring new information about the soils beyond the physico-chemical parameters. They also seem to reveal a more detailed view on microbial biomass or extracellular organic matter pool than Cbio or Cext alone, respectively. The variance, which occurred in biochemical characteristics, also displayed a high discrimination potential between the defined soil categories. Three types of indices were newly proposed: index I (“substrate quantity index”)—the biomass-specific amount of the extracellular organic compounds, index II (“immobilisation ratio”)—the portion of the organic compound immobilised in microbial biomass, and index III (“substrate quality index”)—the extracellular organic compound content related to extracellular organic carbon. The indices displayed a higher potential than both soil biotic and abiotic parameters to discriminate soil characters and soil types.  相似文献   

20.
The effect of endogeic earthworms (Octolasion tyrtaeum) and the availability of clay (Montmorillonite) on the mobilization and stabilization of uniformly 14C-labelled catechol mixed into arable and forest soil was investigated in a short- and a long-term microcosm experiment. By using arable and forest soil the effect of earthworms and clay in soils differing in the saturation of the mineral matrix with organic matter was investigated. In the short-term experiment microcosms were destructively sampled when the soil had been transformed into casts. In the long-term experiment earthworm casts produced during 7 days and non-processed soil were incubated for three further months. Production of CO2 and 14CO2 were measured at regular intervals. Accumulation of 14C in humic fractions (DOM, fulvic acids, humic acids and humin) of the casts and the non-processed soil and incorporation of 14C into earthworm tissue were determined.Incorporation of 14C into earthworm tissue was low, with 0.1 and 0.44% recovered in the short- and long-term experiment, respectively, suggesting that endogeic earthworms preferentially assimilate non-phenolic soil carbon. Cumulative production of CO2-C was significantly increased in casts produced from the arable soil, but lower in casts produced from the forest soil; generally, the production of CO2-C was higher in forest than in arable soil. Both soils differed in the pattern of 14CO2-C production; initially it was higher in the forest soil than in the arable soil, whereas later the opposite was true. Octolasion tyrtaeum did not affect 14CO2-C production in the forest soil, but increased it in the arable soil early in the experiment; clay counteracted this effect. Clay and O. tyrtaeum did not affect integration of 14C into humic fractions of the forest soil. In contrast, in the arable soil O. tyrtaeum increased the amount of 14C in the labile fractions, whereas clay increased it in the humin fraction.The results indicate that endogeic earthworms increase microbial activity and thus mineralization of phenolic compounds, whereas clay decreases it presumably by binding phenolic compounds to clay particles when passing through the earthworm gut. Endogeic earthworms and clay are only of minor importance for the fate of catechol in soils with high organic matter, clay and microbial biomass concentrations, but in contrast affect the fate of phenolic compounds in low clay soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号