首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stagonospora nodorum blotch (SNB) is an important foliar and glume disease in cereals. Inheritance of SNB resistance in wheat appears quantitative. The development of partially resistant cultivars seems to be the only effective way to combat the pathogen. Partial resistance components like length of incubation period (INC), disease severity (DIS) and length of latent period (LAT) were evaluated on a population of doubled-haploids derived from a cross between the partially resistant cultivar Alba and the susceptible cultivar Begra. Experiments were conducted in controlled environments and the fifth leaf was examined. Molecular analyses were based on bulked segregant analyses (BSA) and screening with 240 microsatellites DNA markers. The QTL analysis revealed QTL on chromosome 6AL (designated as QSnl.ihar-6A) and putative QTL on chromosome 6D. The QSnl.ihar-6A accounted for 36% of the phenotypic variance for DIS and 14% for INC. The putative QTL accounted for 10% of the variability in INC and 8% of DIS components of SNB resistance.  相似文献   

2.
Summary A population of 572 F2 derived F3 lines from six crosses were used to estimate parameters relevant to selection for resistance to Septoria nodorum of wheat. Lines were grown in disease free (fungicide sprayed) and inoculated microplots in 2 replications of a split-plot design in a single environment in 1977. Average yield reduction due to disease was approximately 50%; this was associated with an average septoria score of 50% on the flag leaf, an average septoria score of 42% on the head, and a reduction of 37% in seed weight. Low S. nodorum scores were correlated with late heading date, tall plant height, high grain yield, and high seed weight in diseased plots, and high seed weight % (seed weight in diseased plots expressed as a percentage of seed weight in fungicide sprayed plots).Restricted selection indexes were used to study the relative contributions of disease escape, true resistance, and tolerance to variability in grain yield in diseased plots, seed weight in diseased plots, and seed weight %. True resistance appeared to be the most important factor causing variation in grain yield in diseased plots and seed weight %. Tolerance and escape seemed to be more important for seed weight in diseased plots.Heritabilities of S. nodorum scores on the flag leaf and head were 63% and 52%, respectively. Leaf and head scores could be used most effectively as selection criteria to upgrade resistance in a population before harvest.Selection for high seed weight % slightly reduced yields in disease free plots, although yield in diseased plots and seed weight in diseased plots were increased. However, selection for increased yield or increased seed weight in diseased plots improved yield in disease free plots. It is suggested that direct selection for yield or seed weight in diseased plots is likely to achieve more desirable goals than selection for seed weight %.  相似文献   

3.
Summary Foliar symptom severity of seedlings artificially inoculated with S. nodorum were used to idenify the type of gne action controlling resistance to this pathogen in the early generations of two wheat crosses. In both crosses a resistant spring wheat cultivar was crossed to a susceptible cultivar. Reciprocal crosses were included in the analysis to determine if the cytoplasm contributed in any significant degree to the level of resistance present.Results indicated that resistance was polygenic and that it could be explaned prinerpally by additive gene effects. Some differences in reciprocal crosses were evident, but a significant role for the eytoplasm in resistance is not indicated.Cooperative investigations of the Agricultural Research Service of the U. S. Department of Agriculture and the Montana Agricultural Experiment Station. Journal Paper No. 1210.  相似文献   

4.
Summary Common wheat cultivar Virest possesses mildew resistance which is different from resistances expressed by currently documented mildew resistance genes, detected by response to eleven differential wheat powdery mildew isolates. F2 populations from hybrids of the 21 Chinese Spring monosomic lines with Virest revealed one major dominant gene, located on wheat chromosome 1D. The new gene is designated Pm22. Italian cultivars Elia, Est Mottin, Ovest and Tudest also showed the disease response pattern corresponding to Virest.  相似文献   

5.
Genes for frost resistance in wheat   总被引:4,自引:0,他引:4  
J. Sutka 《Euphytica》2001,119(1-2):169-177
Wheat varieties differ in their responses to low temperatures. Geneticstudies on frost resistance in wheat are difficult because the effects arequantitative in nature and thus require precise genetic material andreproducible experimental conditions. The detailed diallel analyses indicatedthat the inheritance of frost resistance is polygenic and mostly additive.Nevertheless, studies using monosomic, ditelosomic and substitution lineshave identified specific chromosomes that carry genes responsible for frostresistance. In particular, the chromosomes 5A and 5D appear to carrymajor genes. Using molecular markers (RFLP, AFLP) and recombinantsubstitution lines it was shown that the Vrn-A1 (vernalization) and Fr1 (frost resistance) loci were located closely linked on the distal portionof the long arm of 5A, but recombination between them was found (cM = 2). The RFLP markers Xpsr426 and Xwg644 were tightlylinked to the Vrn-A1 locus. Loci Vrn-D1 and Fr2are located on the long arm of 5D. Fr2 and Vrn-D1 arehomoeologous to Fr1 and Vrn-A1. A physical map of theVrn-A1 and Fr1 genes was constructed on chromosome 5Ausing deletion lines. This cytogenetically based physical map could be usefulin further work on genome mapping and gene cloning.  相似文献   

6.
Summary Several near-isogenic lines of durum wheat cv. LD222 have been developed. These include a near-isogenic line carrying gene P and designated P-LD222. The P gene from Triticum polonicum determines a long empty outer glume. The objective of this study was to determine the inheritance and chromosomal location of the P gene. To determine the inheritance, P-LD222 was crossed to two chlorina mutants and to a near-isogenic line for the purple culm trait, Pc-LD222. Linkage of the P gene with the mutated gene in chlorina mutant CDd6 indicated that the P gene was located on chromosome 7A. P-LD222 was also crossed with durum cultivar Langdon (LDN) and the LDN D genome substitution lines, LDN 7D(7A) and LDN 7D(7B). Segregation for the long glume trait in the F2 of LDN/P-LD222 and LDN 7D(7B)/P-LD222 was normal (3:1) and indicated P gene was not on chromosome 7B. Significant deviation from a 3:1 in the F2 of LDN 7D(7A)/P-LD222 confirmed the location of P on chromosome 7A, as indicated by the linkage analysis.  相似文献   

7.
A.K. Joshi  R. Chand  B. Arun 《Euphytica》2002,123(2):221-228
A total of 1,407 spring wheat (T. aestivum) lines of Indian and CIMMYT (International Maize and Wheat Improvement Centre, Mexico) origin were evaluated for plant height, days to maturity and resistance to spot blotch (caused by Bipolaris sorokiniana) during the 1994–95, 1995–96 and 1996–97 crop seasons. The frequency distribution of genotypes, based on disease score ignoring the growth stages, differed from the distribution in which disease score was assessed on a similar growth stage. Two crosses each,between `tall resistant × dwarf susceptible' and `late resistant × early susceptible' genotypes, were made. The evaluation of homozygous resistant lines in the F3, F4 and F5 generations of both crosses showed a wide range of plant height and days to maturity. These lines showed significant differences for plant height and days to maturity but did not show a significant difference for AUDPC values of spot blotch. The correlation coefficients for AUDPC versus plant height or days to maturity were weak, i.e., – 0.336 and 0.061, respectively. Results indicated that resistance to spot blotch severity was independent of plant height and days to maturity in progenies from these crosses.  相似文献   

8.
T. Danon  Z. Eyal 《Euphytica》1990,47(3):203-214
Summary All possible crosses (including reciprocals) were made among four winter bread (Aurora, Bezostaya 1, Kavkaz, and Trakia) and two Israeli spring wheat cultivars (spring x winter diallel), and among two South American spring wheats (Colotana and Klein Titan) with the same Israeli cultivars (spring x spring diallel) to study the inheritance of resistance to septoria tritici blotch. Parents, F1, F2 and backcrosses were grown in two separated blocks in the field over two years. One block was inoculated with isolate ISR398A1 and another with ISR8036. Each plant was assessed for plant height (cm), days to heading (from emergence or transplanting), and percent pycnidia coverage on the four uppermost leaves. Plant height and maturity had insignificant effects on pycnidia coverage. No cytoplasmic effects could be detected. In the spring x winter diallel general combining ability (GCA) was the major component of variation. Significant specific combining ability (SCA) was present in all cases. Partial dominance was operative in populations inoculated with ISR398A1. Resistance in the winter wheats was controlled by a small number of genes (usually two). The four winter wheats derive their resistance to ISR398A1 from their common parent Bezostaya 1 which lacks the 1B/1R wheat-rye translocation. Their resistance is readily overcome by ISR8036. Inheritance of the South American wheats can be explained by additive effects, with a small number of genes of recessive mode affecting resistance to both isolates. Breeding strategies that favor additive, and additive x dominance gene action should be pursued.  相似文献   

9.
H. Ma  G. R. Hughes 《Euphytica》1993,70(1-2):151-157
Summary Resistance to septoria nodorum blotch in Triticum monococcum, T. tauschii, T. timopheevii, T. dicoccum and T. durum was evaluated on plants at the three-leaf stage in greenhouse tests. A high frequency of resistant genotypes was found in T. monococcum, T. tauschii and T. timopheevii, but not in T. dicoccum and T. durum. The resistance of F1 plants of crosses of resistant T. monococcum (PI 289599) and T. timopheevii (PI 290518) accessions with susceptible common wheat cv. Park and durum wheat cv. Wakooma, respectively, was evaluated on the basis of percentage leaf necrosis, lesion number, lesion size and incubation period. No dominance was found for long incubation period, but various dominance relationships occurred for low percentage leaf necrosis, low lesion number and small lesion size, depending on the cross. Multiple regression analysis showed that lesion number contributed more to percentage leaf necrosis than lesion size or incubation period. Resistance to septoria nodorum blotch was transferred successfully from T. timopheevii to cultivated durum wheat. Resistant BC1F7 lines, recovered from the T. timopheevii (PI 290518) × Wakooma cross, showed normal chromosome behaviour at meiosis (14 bivalents) and were self-fertile. However, an effective level of resistance was not recovered in lines derived from the other interspecific crosses.  相似文献   

10.
Summary The bread wheat cultivars Pasqua and Katepwa, and durum wheat cultivars Kyle and D8257 were used to test the effects of sowing Phaeosphaeria nodorum-shrivelled seed. In a controlled environment, emergence, tillering, and dry weight of seedlings were compared at two sowing depths. Emergence, tillering and plant dry weights were also determined in field plots in 1992 and 1993, as were yield and thousand kernel weight (TKW) in plants inoculated with P. nodorum. Under controlled conditions the level of shrivelling did not affect emergence at depths of 25 mm and, except for Katepwa, 50 mm. Deeper seeding reduced emergence regardless of the level of shrivelling. Seeding depth did not affect dry weight of roots and shoots and the effect on tillering was inconsistent in the two years. Dry root weight was positively correlated with original seed size and decreased with level of shrivelling. In the field, seedling emergence of severely shrivelled seed was significantly lower in Katepwa and Pasqua. Tillers per plant appeared to increase with increased level of shrivelling, but was significant only for D8257 in one year. Dry tiller weight was inversely related to tillering and decreased consistently with level of shrivelling. Excepting Pasqua, in one year, yield and TKW did not differ between plots originating from plump or shrivelled seed. Inoculation with P. nodorum caused a significant reduction in TKW and yield in all cultivars but Kyle. Seed shrivelled due to P. nodorum was in general found to be as suitable as plump seed for growing a wheat crop.  相似文献   

11.
Langdon durum D-genome disomic substitution lines were used to study the chromosome locations of adult-plant leaf rust resistance genes identified from tetraploid wheat accessions. The accessions are 104 (Triticum turgidum subsp. dicoccum var. arras) and 127 (T. turgidum subsp. durum var. aestivum). The complete sets of the substitution lines were crossed as female parents with the accessions and F1 double monosomic individuals selected at metaphase I. Segregating F2 individuals were inoculated during the flag leaf stage with pathotype UVPrt2 of Puccinia triticina. The substitution analysis involving accession 104 showed that the gene for leaf rust resistance is located on chromosome 6B. The analysis with accession 127 indicated that chromosome 4A carries a gene for leaf rust resistance. The two novel genes are temporarily designated as Lrac104 and Lrac127, respectively from accessions 104 and 127.  相似文献   

12.
The inheritance of the leaf pubescence character of a Chinese local wheat cultivar ‘Hon-mang-mai’ was investigated by monosomic and telosomic analyses. Leaf pubescence was evaluated by observation of the adaxial side of the penultimate leaf of adult plants. F1 hybrids of ‘Hong-mang-mai’ with a non-pubescent cultivar ‘Chinese Spring’ had leaf pubescence, but its density was about a half of that of ‘Hong-mang-mai’. In the F2 generation, the segregation ratio of pubescent to non-pubescent plants fitted a ratio of 3: 1, suggesting that leaf pubescence was controlled by one dominant gene. Monosomic analysis revealed that the gene for pubescence is located on chromosome 7B. Telosomic analysis showed that the gene is located on the short arm of chromosome 7B with a distance of 14.3%from the centromere. This gene is not allelic with the previously reported hairy leaf gene Hl on chromosome 4B, and therefore, is designated Hl2, hairy leaf 2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Triticum turgidum ssp. polonicum and T. ispahanicum were characterized by the long glume phenotype. P 1 gene determines the long glume phenotype of T. polonicum, and locates on chromosome 7A. T. ispahanicum has shorter glume than T. polonicum and the long glumephenotype is determined by P 2 gene located on chromosome 7B. In the present study, aneuploid stocks of `Langdon' durum wheat were used to map the genes, P 1 and P 2. P 1 located on the long arms of chromosome 7A and its map distances from the centromere was 14.5 cM. On chromosome 7B, four loci located as cc (chocolate black chaff) – Pc (purple culm) – centromere – P 2cn-BI (chlorina). P 2 located on the long arms of chromosome 7B and its map distances from the centromere was 11.7 cM. It was suggested that a paralogous gene set conditions long glume phenotype in the homoeologous group 7 chromosomes. The P 1 and P 2 genes may be useful as genetic markers in tetraploid wheat.  相似文献   

14.
Summary Seven soft red winter wheat cultivars were evaluated for partial resistance to Leptosphaeria nodorum under field conditions. The results demonstrate that resistance is available among cultivars that are adapted to the southeastern U.S. and that resistance is long lasting. Resistant cultivars had longer incubation and latent periods, slower rates of lesion development, and reduced the level of sporulation of L. nodorum. Seedlings of susceptible cultivars sustained severe disease with dew periods as short as 48 hr in greenhouse tests. One resistant cultivar sustained little damage with dew period as long as 144 hr.Latent period was shortest on the second leaf below the flag leaf (F-2 leaf) of all cultivars and longest on the flag leaf which reflected the effect of microclimate and leaf age. The range in length of latent period on the flag, F-1, and F-2 leaves of resistant cultivars was less than that for susceptible cultivars. Differences between cultivars were greatest (up to 6.8 days) for the F-2 leaf. A delay in production of inoculum on the F-2 and lower leaves of resistant cultivars should delay infection of the flag leaf and spike.The greatest differentiation among cultivars for sporulation of L. nodorum was on upper leaves at Feekes growth stage 11.2. Oasis consistently had less sporulation than other cultivars at all sampling dates and leaf positions. The rate of disease progress up the plant (disease severity) and area under the disease progress curve were also least on Oasis.There were significant correlations among components of resistance and associated components suggesting that a single or interrelated mechanisms control expression of resistance. Overall, Oasis was the most resistant cultivar followed by Coker 762 and Coker 747. There cultivars have remained resistant for ten or more years. Stacy was intermediate in resistance and was the most variable of the seven cultivars for the components tested. Holley, Omega 78, and Florida 301 were highly susceptible by all criteria tested. Plant height was not a factor in resistance. The resistant cultivars are mostly later in maturity than the susceptible cultivars. In this study, crop maturity was similar under existing environmental conditions during the two seasons when most data were collected.  相似文献   

15.
Stagonospora nodorum blotch (SNB) is an important foliar disease of durum wheat (Triticum turgidum var. durum) worldwide. The combined effects of SNB and tan spot, considered as components of the leaf spotting disease complex, result in significant damage to wheat production in the northern Great Plains of North America. The main objective of this study was the genetic analysis of resistance to SNB caused by Phaeosphaeria nodorum in tetraploid wheat, and its association with tan spot caused by Pyrenophora tritici-repentis race 2. The 133 recombinant inbred chromosome lines (RICL) developed from the cross LDN/LDN(Dic-5B) were evaluated for SNB reaction at the seedling stage under greenhouse conditions. Molecular markers were used to map a quantitative trait locus (QTL) on chromosome 5B, explaining 37.6% of the phenotypic variation in SNB reaction. The location of the QTL was 8.8 cM distal to the tsn1 locus coding for resistance to P. tritici-repentis race 2. The presence of genes for resistance to both SNB and tan spot in close proximity in tetraploid wheat and the identification of molecular markers linked to these genes or QTLs will be useful for incorporating resistance to these diseases in wheat breeding programs.  相似文献   

16.
D. Rubiales  A. Moral  A. Martín 《Euphytica》2001,122(2):369-372
Septoria leaf blotch and common bunt are important diseases of wheat to which Hordeum vulgare is resistant. Addition lines of H. vulgare in wheat were utilized to determine which H. vulgare chromosomes carry resistance genes. Resistance to septoria leaf blotch was conferred by gene(s) present all over the barley genome, but more strongly by those located on chromosomes 7 and 4. Almost complete resistance to common bunt was conferred by gene(s) present in chromosomes 6 and a slight but significant level of resistance was conferred by chromosome 7. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Summary Several wheat cultivars/lines were inoculated with isolates of Erysiphe graminis tritici to identify new genes/alleles for resistance. The wheats were tested with 13 isolates that had been characterized from responses on differential lines with known resistance genes. Gene Mlk which occurs in cultivars Kolibri, Syros, Ralle and several other European common wheats was found to be an allele at the Pm3 locus and is now designated Pm3d. The mildew resistance in an old Australian wheat, W150, is conferred by a single gene also allelic to Pm3 and now designated Pm3e. The near-isogenic line Michigan Amber/8*Cc possesses another allele now designated Pm3f. A Syrian land variety of common wheat shows mildew resistance that is conditioned by the combination of genes Pm1 and Pm3a. Finally, two accessions of Triticum aestivum ssp. sphaerococcum appeared to possess the Pm3c allele.  相似文献   

18.
Z. Eyal 《Euphytica》1992,61(1):25-35
Summary Wheat cultivars of diverse genetical background and response to Septoria tritici were inoculated during 2 years in the field with single or mixtures of isolates. Significant reductions in pycnidial coverage were recorded for mixtures of 2 or 5 isolates relative to the virulent isolate ISR8036 under the moderate 1989/1990 epidemic. The interactions between cultivars and all possible combinations among ISR398A1, USR8036 and the 1:1. mixture of the 2 isolates were highly significant. Cultivars exposed to mixtures of isolates expressed differential response in pycnidial coverage compared to the single isolate response. The coverage in the mixtures was significantly less than that of the arithmetic mean between the two isolates. Under the severe 1990/1991 epidemic pycnidial coverage on cultivars inoculated with the mixture of the same 2 isolates did not differ statistically from that of ISR8036, yet, ISR398A1 differed from ISR8036 and the isolate mixture. Losses in 1000-kernel weight for 12 wheat cultivars which were repeated during the 2-trial-years were significantly lower in the isolate mixture relative to that of ISR8036. The suppression of symptoms in isolate mixture relative to the expected expression of the most virulent component may be indicative of differential aggressiveness of isolates regardless of their virulence. The phenomenon may affect screening and selection procedures in breeding for resistance.  相似文献   

19.
Summary On average, the cereal species studied were susceptible to septoria nodorum blotch (SNB), except for spring triticale on leaf and head and winter titicale on leaf, that appeared to be significantly more resistant, than the other ones.In all three species the SNB response of the adult plants was to a limited extent only predicted by the reaction on first leaf seedlings. In most cases it was impossible to predict the response to SNB of adult plants on the basis of seedling reaction. Correlations between the adult plant stage and the seedling stage, or detached seedling leaves, appears not to be sufficient for use in practical breeding work. A reversal of reaction to SNB was even found between the above growth stages in studied spring and winter wheat varieties.  相似文献   

20.
J. Košner  P. Bartoš 《Euphytica》1982,31(3):965-970
Summary Monosomic analysis of resistance to stem rust, race 11 (isolate G 425) was carried out in the cultivar Almus (GDR) possessing a 1B/1R translocation. F2 progenies of monosomic and disomic F1 plants of Almus crossed with 21 monosomic lines of Chinese Spring were tested. Two lines (1B and 6B) differed significantly from the disomic segregation ratio by a higher number of resistant plants and two other lines (1D and 6A) by a lower number of resistant plants. The results fitted a hypothesis comprising the interaction of two genes for resistance and two inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号