首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proliferation of icebergs from Antarctica over the past decade has raised questions about their potential impact on the surrounding pelagic ecosystem. Two free-drifting icebergs, 0.1 and 30.8 square kilometers in aerial surface area, and the surrounding waters were sampled in the northwest Weddell Sea during austral spring 2005. There was substantial enrichment of terrigenous material, and there were high concentrations of chlorophyll, krill, and seabirds surrounding each iceberg, extending out to a radial distance of approximately 3.7 kilometers. Extrapolating these results to all icebergs in the same size range, with the use of iceberg population estimates from satellite surveys, indicates that they similarly affect 39% of the surface ocean in this region. These results suggest that free-drifting icebergs can substantially affect the pelagic ecosystem of the Southern Ocean and can serve as areas of enhanced production and sequestration of organic carbon to the deep sea.  相似文献   

2.
An unresolved issue in ocean and climate sciences is whether changes to the surface ocean input of the micronutrient iron can alter the flux of carbon to the deep ocean. During the Southern Ocean Iron Experiment, we measured an increase in the flux of particulate carbon from the surface mixed layer, as well as changes in particle cycling below the iron-fertilized patch. The flux of carbon was similar in magnitude to that of natural blooms in the Southern Ocean and thus small relative to global carbon budgets and proposed geoengineering plans to sequester atmospheric carbon dioxide in the deep sea.  相似文献   

3.
The delta(13)C value of the dissolved inorganic carbon in the surface waters of the Pacific Ocean has decreased by about 0.4 per mil between 1970 and 1990. This decrease has resulted from the uptake of atmospheric CO(2) derived from fossil fuel combustion and deforestation. The net amounts of CO(2) taken up by the oceans and released from the biosphere between 1970 and 1990 have been determined from the changes in three measured values: the concentration of atmospheric CO(2), the delta(13)C of atmospheric CO(2) and the delta(13)C value of dissolved inorganic carbon in the ocean. The calculated average net oceanic CO(2) uptake is 2.1 gigatons of carbon per year. This amount implies that the ocean is the dominant net sink for anthropogenically produced CO(2) and that there has been no significant net CO(2) released from the biosphere during the last 20 years.  相似文献   

4.
Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.  相似文献   

5.
河流输送大量的陆源有机物、无机物和微生物到海洋,沉积到近海海盆。随着陆源和海源沉积物在盆地的逐渐堆积,这些陆源微生物被埋藏,进而逐渐演变为沉积物中固有微生物群体的一部分,是研究微生物环境适应与进化的理想生态系统。本课题组从国际大洋钻探计划(IODP) 337航次的一个西太平洋煤层岩芯(1 999 mbsf, meter below the seafloor)中,成功分离到一株革兰氏阳性细菌泛酸枝芽孢杆菌19R1-5(19R)。研究发现,19R与分离自陆源土壤的泛酸枝芽孢杆菌DSM 26(26T)相比,16S rRNA基因序列相似性为100%,DNA杂交同源性高达91.7%。我们将19R和26T作为研究对象,从比较基因组的角度对19R的来源和代谢潜能进行研究。结果表明,分离自海底深部的19R来源于陆地;同时,19R较26T拥有3个额外的磷酸葡萄糖转移酶系统(PTS),提示19R具有更强的糖利用能力,使之能够适应原位中特殊的营养环境,研究结果对探索海底深部生物圈微生物的来源及其在深海物质循环中的作用具有重要意义。  相似文献   

6.
Zickfeld K  Fyfe JC  Eby M  Weaver AJ 《Science (New York, N.Y.)》2008,319(5863):570; author reply 570
Unlike Le Quéré et al. (Reports, 22 June 2007, p. 1735), we do not find a saturating Southern Ocean carbon sink due to recent climate change. In our ocean model, observed wind forcing causes reduced carbon uptake, but heat and freshwater flux forcing cause increased uptake. Our inversions of atmospheric carbon dioxide show that the Southern Ocean sink trend is dependent on network choice.  相似文献   

7.
An ocean-climate model that shows high fluxes of anthropogenic carbon dioxide into the Southern Ocean, but very low storage of anthropogenic carbon there, agrees with observation-based estimates of ocean storage of anthropogenic carbon dioxide. This low simulated storage indicates a subordinate role for deep convection in the present-day Southern Ocean. The primary mechanism transporting anthropogenic carbon out of the Southern Ocean is isopycnal transport. These results imply that if global climate change reduces the density of surface waters in the Southern Ocean, isopycnal surfaces that now outcrop may become isolated from the atmosphere, tending to diminish Southern Ocean carbon uptake.  相似文献   

8.
去除溶解性有机质对红壤水稻土碳氮矿化的影响   总被引:8,自引:0,他引:8  
【目的】研究溶解性有机质(DOM)对红壤水稻土碳、氮矿化作用的影响,为正确认识红壤碳、氮循环的过程机制、制订科学的养分管理措施及有效控制温室气体排放提供参考依据。【方法】采用发育于第四纪红粘土的水稻土,以旱地红壤为对照,通过室内恒温培养试验研究了去除DOM土和原土间有机碳、氮的矿化差异。【结果】去除DOM使土壤有机碳的累积矿化量在培养前期(12 d)下降了6.3%~8.9%(平均7.5%),但整个培养期内仅降低3.6%~6.1%(平均5.0%),其影响不显著。去除DOM对不同土壤有机氮矿化的影响不同。3种水稻土在去除DOM后,土壤有机氮的累积矿化量显著下降,降幅为11.2%~18.3%(平均12.9%),而旱地红壤仅下降7.6%,与原土没有显著差异。【结论】DOM是土壤微生物生命活动中重要的氮素来源和有机氮矿化的原初物质,虽然只占土壤有机质的很少一部分,但在红壤水稻土有机氮的矿化中起重要作用。  相似文献   

9.
Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.  相似文献   

10.
Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.  相似文献   

11.
低碳高氮废水的人工湿地脱氮研究进展   总被引:2,自引:0,他引:2  
围绕如何提高人工湿地对低碳高氮废水中氮的去除效率,介绍了人工湿地污水处理系统脱氮的机理,归纳阐述了碳源、溶解氧、温度以及pH值等因素对人工湿地处理低碳高氮废水时脱氮效果的影响,并对人工湿地处理低碳高氮废水的研究方向作了展望。  相似文献   

12.
Major bacterial contribution to marine dissolved organic nitrogen   总被引:3,自引:0,他引:3  
Next to N2 gas, the largest pool of reduced nitrogen in the ocean resides in the enormous reservoir of dissolved organic nitrogen (DON). The chemical identity of most of this material, and the mechanisms by which it is cycled, remain fundamental questions in contemporary oceanography. Amino acid enantiomeric ratios in the high molecular weight fraction of DON from surface and deep water in three ocean basins show substantial enrichment in D enantiomers of four amino acids. The magnitude and pattern of these D/L enrichments indicate that peptidoglycan remnants derived from bacterial cell walls constitute a major source of DON throughout the sea. These observations suggest that structural properties of specific bacterial biopolymers, and the mechanisms for their accumulation, are among the central controls on long-term cycling of dissolved organic nitrogen in the sea.  相似文献   

13.
Most of the oceanic reservoir of dissolved organic matter (DOM) is of marine origin and is resistant to microbial oxidation, but little is known about the mechanisms of its formation. In a laboratory study, natural assemblages of marine bacteria rapidly (in <48 hours) utilized labile compounds (glucose, glutamate) and produced refractory DOM that persisted for more than a year. Only 10 to 15% of the bacterially derived DOM was identified as hydrolyzable amino acids and sugars, a feature consistent with marine DOM. These results suggest that microbial processes alter the molecular structure of DOM, making it resistant to further degradation and thereby preserving fixed carbon in the ocean.  相似文献   

14.
The Redfield ratio [carbon:nitrogen:phosphorus (C:N:P)] of particle flux to the deep ocean is a key factor in marine biogeochemical cycling. Changes in oceanic carbon sequestration have been linked to variations in the Redfield ratio on geological time scales, but this ratio generally is assumed to be constant with time in the modern ocean. However, deep-water Redfield ratios in the northern hemisphere show evidence for temporal trends over the past five decades. The North Atlantic Ocean exhibits a rising N:P ratio, which may be related to increased deposition of atmospheric nitrous oxides from anthropogenic N emissions. In the North Pacific Ocean, increasing C:N and C:P ratios are accompanied by rising remineralization rates, which suggests intensified export production. Stronger export of carbon in this region may be due to enhanced bioavailability of aeolian iron. These findings imply that the biological part of the marine carbon cycle currently is not in steady state.  相似文献   

15.
Radiocarbon ages of vascular plant wax-derived n-alkanes preserved in well-dated Holocene sediments in an anoxic fjord (Saanich Inlet, Canada) were found to be not only substantially older than the depositional age but increasingly so during the Holocene. Assuming that n-alkanes serve as a proxy for recalcitrant terrigenous organic matter, this indicates that the accumulation of refractory organic carbon in soils that developed after the deglaciation of the American Pacific Northwest is ongoing and may still be far from equilibrium with mineralization and erosion rates.  相似文献   

16.
 【目的】研究沟灌、渗灌、滴灌3种灌溉模式下,保护地土壤可溶性有机碳和微生物量碳在剖面中的分布特征。【方法】灌溉模式设沟灌、渗灌、滴灌3种,进行长达10年的长期定位灌溉试验。对长期定位灌溉试验保护地分层采集土壤样品,测定土壤总有机碳、可溶性有机碳、微生物量碳含量,分析其剖面分布特征。【结果】土壤总有机碳、可溶性有机碳和微生物碳含量均呈表层土壤最高、随土层深度增加而降低的分布趋势;但灌溉模式间差异明显,土壤总有机碳含量在0—10 cm、80—100 cm土层为沟灌>渗灌>滴灌,10—80 cm土层为渗灌>沟灌>滴灌;在0—100 cm剖面各层,可溶性有机碳含量均为沟灌>滴灌>渗灌,微生物量碳为滴灌>沟灌>渗灌。可溶性有机碳、微生物量碳占总有机碳的比率分别在4.98%—12.87%和1.48%—2.82%之间,其占总有机碳的比率均为滴灌>沟灌>渗灌。土壤可溶性有机碳、微生物量碳与土壤总有机碳含量呈显著的正相关关系。【结论】沟灌有利于土壤总有机碳、水溶性有机碳的积累,滴灌有利于微生物生物量碳的增加;渗灌相比较而言最不利于土壤有机质积累,不仅总有机碳含量低且水溶性含量占总有机碳的比例小。  相似文献   

17.
通过调查同一个森林生态系统不同样地中多个树种根际范围内土壤可溶性有机碳和土壤有机碳的含量,分析和探讨影响森林生态系统土壤可溶性有机碳和土壤有机碳空间异质性的环境因素。本项目在云南哀牢山亚热带中山湿性常绿阔叶原生林生态系统中进行,选择3个山谷样地上游森林生态系统原生土区域中7个主要树种作为研究对象,调查0~10 cm表层土壤可溶性有机碳和土壤有机碳的含量。研究结果表明:硬壳柯、变色锥、木果柯、多花山矾和南洋木荷等5个乔木树种根际范围内土壤可溶性有机碳和土壤有机碳含量显著高于云南连蕊茶和云南越桔2个灌木树种根际范围内土壤可溶性有机碳和土壤有机碳含量;5个乔木树种中硬壳柯和南洋木荷2个树种根际范围内土壤可溶性有机碳和土壤有机碳含量明显大于另外3个乔木树种,说明不同树种对土壤可溶性有机碳和土壤有机碳的空间异质性有明显影响。7个不同树种根际范围内土壤可溶性有机碳含量、土壤有机碳含量和土壤可溶性有机碳含量占土壤有机碳含量的比例在老君山神山谷样地中达到最大值,在三棵树山谷样地中降低为最低值,说明不同山谷样地中的环境条件也可以显著影响土壤可溶性有机碳和有机碳含量及两者之间的比例。本项目研究结果充分证明森林生态系统土壤可溶性有机碳和土壤有机碳空间分布规律的复杂性和环境控制因子的多样性,可为全球各种类型森林生态系统土壤有机碳成分和碳贮量等方面的研究内容提供新的思路和方向。  相似文献   

18.
A major ecosystem shift in the northern Bering Sea   总被引:5,自引:0,他引:5  
Until recently, northern Bering Sea ecosystems were characterized by extensive seasonal sea ice cover, high water column and sediment carbon production, and tight pelagic-benthic coupling of organic production. Here, we show that these ecosystems are shifting away from these characteristics. Changes in biological communities are contemporaneous with shifts in regional atmospheric and hydrographic forcing. In the past decade, geographic displacement of marine mammal population distributions has coincided with a reduction of benthic prey populations, an increase in pelagic fish, a reduction in sea ice, and an increase in air and ocean temperatures. These changes now observed on the shallow shelf of the northern Bering Sea should be expected to affect a much broader portion of the Pacific-influenced sector of the Arctic Ocean.  相似文献   

19.
The stable carbon isotope ratio of atmospheric CO(2) (δ(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present δ(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in δ(13)C(atm) during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the δ(13)C(atm) evolution. During the Last Glacial Maximum, δ(13)C(atm) and atmospheric CO(2) concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.  相似文献   

20.
Surface waters of the subtropical Sargasso Sea contain dissolved inorganic phosphate (DIP) concentrations of 0.2 to 1.0 nanomolar, which are sufficiently low to result in phosphorus control of primary production. The DIP concentrations in this area (which receives high inputs of iron-rich dust from arid regions of North Africa) are one to two orders of magnitude lower than surface levels in the North Pacific (where eolian iron inputs are much lower and water column denitrification is much more substantial). These data indicate a severe relative phosphorus depletion in the Atlantic. We hypothesize that nitrogen versus phosphorus limitation of primary production in the present-day ocean may be closely linked to iron supply through control of dinitrogen (N2) fixation, an iron-intensive metabolic process. Although the oceanic phosphorus inventory may set the upper limit for the total amount of organic matter produced in the ocean over geological time scales, at any instant in geological time, oceanic primary production may fall below this limit because of a persistent insufficient iron supply. By controlling N2 fixation, iron may control not only nitrogen versus phosphorus limitation but also carbon fixation and export stoichiometry and hence biological sequestration of atmospheric carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号