首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Phakopsora pachyrhizi is a biotrophic fungus that causes rust on soybean, leading to devastating yield losses. Development of resistant cultivars for deployment in different geographic regions requires a comprehensive understanding of the prevalent P. pachyrhizi pathotypes. To determine the pathotypes existing in four East African countries, 65 isolates were tested on 11 soybean host differentials. In addition, the virulence spectrum of isolates collected from the same region over multiple years was compared. The majority of the isolates (54%) belonged to pathotype 1000, which was found in all countries. The pathotypes with the most complex virulence spectrum, which comprised isolates from Kenya and Malawi, were virulent on four differentials. All pathotypes were virulent on soybean genotypes carrying the Rpp1 resistance gene to P. pachyrhizi, but they were avirulent on cultivars carrying the Rpp1b, Rpp2, or Rpp3 gene, as well as on cultivar No6-12-1 that carries Rpp2, Rpp4, and Rpp5. Two of the pathotypes were virulent on cultivar UG 5 that carries Rpp1 and Rpp3 and on Hyuuga that carries Rpp3 and Rpp5. The isolates collected from different countries differed in their virulence spectrum across the years. Shannon's index (H) and Simpson's index (S) of diversity indicated that the isolates from Malawi were more diverse (H = 1.55, S = 0.90) while those from Uganda had lower diversity (H = 0.78, S = 0.46 ). The Rpp genes that were found to provide resistance to all pathotypes of P. pachyrhizi can be employed for soybean breeding aimed at durable rust resistance.  相似文献   

2.
A sequence‐based approach was used to investigate molecular genetic variations in Phakopsora pachyrhizi, an obligate biotrophic pathogen that causes Asian soybean rust. In Argentina, the samples came from uredinium‐bearing leaves taken from 11 soybean fields; in Brazil, the samples comprised urediniospores from leaves of 10 soybean genotypes that had been grown in three experimental stations during two growing seasons. PCR‐based cloning techniques were used to generate DNA sequences for two gene regions and alignments were supplemented with data from GenBank. A total of 575 sequences for the internal transcribed spacer region (18 ribotypes) and 160 partial sequences for a housekeeping gene encoding ADP‐ribosylation factor (10 haplotypes) were obtained. Ribotype accumulation curves predicted that about 20 bacterial clones would recover 5–6 ribotypes (c. 70–80% of the total molecular variation) per locality. The samples from the three experimental stations in Brazil displayed most (14 out of 16) ribotypes found worldwide; the lack of genetic structure and differentiation at a diverse geographic scale suggests that both local and distant sources provide airborne inoculum during disease establishment. Soybean genotypes with resistance genes for the Asian soybean rust did not decrease the molecular genetic variation of fungal populations.  相似文献   

3.
BACKGROUND: The demethylation inhibitor (DMI) fungicide myclobutanil can be an effective component of spray programmes designed to control the highly destructive plant pathogen Phakopsora pachyrhizi Syd. & P. Syd., causal agent of Asian soybean rust. Myclobutanil is known from previous studies in grapevines to be xylem mobile. This study investigates the mobility profile of myclobutanil in soybean as an important component of its effective field performance. RESULTS: Over a 12 day period under greenhouse conditions, a constant uptake of myclobutanil from leaflet surfaces into the leaflet tissue was observed. Once in the leaflet, myclobutanil was seen to redistribute throughout the tissue, although no movement out of leaflets occurred owing to a lack of phloem mobility. The ability of myclobutanil to redistribute over distance within the soybean plant was revealed when visualizing movement of the compound to foliage above the point of application on the plant stem. An efficacy bioassay demonstrated that the systemic properties of myclobutanil allow control of disease at a point remote from the initial site of compound application. CONCLUSION: It is suggested that the high degree of xylem systemicity displayed by myclobutanil in soybean foliage is a contributory factor towards its commercial effectiveness for control of Asian soybean rust. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
Soybean is one of the top five agricultural products in the United States and is highly susceptible to Phakopsora pachyrhizi, an exotic obligate biotrophic fungus. The little amount of genomic information about P. pachyrhizi limits understanding of the soybean–soybean rust pathogen interaction and the possibility of engineering resistance to this pathogen in soybean. Illumina mRNA‐Seq analysis revealed P. pachyrhizi genes expressed during a biotrophic interaction between P. pachyrhizi and soybean during fungal sporulation 10 days after inoculation. Approximately 2·4 million DNA sequences representing portions of potential P. pachyrhizi genes were assembled into 32 940 contigs that were used to search against expressed sequence tag (EST), protein and conserved domain databases. About 7500 contigs represent newly discovered P. pachyrhizi sequences. Of these, 527 shared similarity to genes encoding fungal proteins involved in different metabolic pathways such as galactose and glycogen metabolism, glycolysis, the citrate cycle, fatty acid metabolism, amino acid metabolism, proteolysis, protein synthesis, cell cycle division and mitosis, and cell wall biogenesis. Almost 7000 potential P. pachyrhizi genes are still of unknown function. Such information may be useful in the development of new methods of broadening resistance of soybean to P. pachyrhizi, including the silencing of important P. pachyrhizi genes, and also to understand the molecular basis of soybean–P. pachyrhizi interactions.  相似文献   

5.
Soybean rust, caused by the biotrophic fungus Phakopsora pachyrhizi, is the most important foliar disease of soybean (Glycine max) worldwide. Deployment of resistant soybean cultivars is the best option for managing this disease. Genes conferring resistance to P. pachyrhizi have been identified, but pathotypes of the rust fungus overcoming these resistance genes have also been found. To identify novel resistance genes, soybean genotypes from both local and international sources were screened at multiple locations in Tanzania and Uganda in 2016 and 2017. The results from this screening revealed that infection types, disease severities, and sporulation levels varied among the genotypes and locations. The majority of the genotypes had tan-coloured (TAN) lesions and developed moderate sporulation, implying susceptibility, while only seven of the 71 lines had reddish-brown (RB) lesions and showed low disease severities in all of the screening environments. We identified seven genotypes that were the most resistant to rust in the most locations over the two years. These genotypes will be useful for further studies and, ultimately, for rust management, as they show broad resistance to various pathotypes of the rust fungus.  相似文献   

6.
A total of 45 single uredinial isolates of Phakopsora pachyrhizi were collected from rust-infected soybean and wild host plants (Pueraria lobata and G. soja ) at different localities in central and southwestern Japan. Eighteen pathogenic races were identified using a set of differential varieties composed of nine cultivars of soybean and two accession lines of G. soja. Nine and 11 races were found on soybean and wild host plants, respectively. Two races were common to soybean and wild host plants. Received 27 April 2001/ Accepted in revised form 22 August 2001  相似文献   

7.
Outbreaks of a rust disease in eucalypt forestry plantations and nurseries in Kenya, Mozambique and South Africa occurred between 2009 and 2014. The pathogen was identified using morphology and molecular phylogenetic analyses as an undescribed species in the Phakopsoraceae. A systematic study, based on nuclear ribosomal DNA, showed that it is a species of Phakopsora, herein named Phakopsora myrtacearum sp. nov. This new species of rust is the second validly described species on Eucalyptus, along with Puccinia psidii. Phakopsora myrtacearum is distinguished from P. psidii by leaf symptoms, morphology of the urediniospores and distinct phylogenetic placement. Phakopsora myrtacearum has been found on three species of Eucalyptus in Kenya, Mozambique and South Africa, and it may have future negative implications for commercial forestry in these areas.  相似文献   

8.
 对来源于河北东部沿海地区的129份野生大豆进行抗大豆花叶病毒病鉴定。结果表明,2.3%的野生大豆抗大豆花叶病毒病,14.7%的野生大豆表现为中抗,26.4%的野生大豆表现为中间反应类型。选取11份不同抗性水平野生大豆进行生化指标的比较,相关分析表明,POD和SOD酶活性与野生大豆对病毒病的抗性无明显的相关性,而PPO和PAL活性与野生大豆对病毒病的抗性呈显著正相关,可利用PPO和PAL活性作为野生大豆病毒病抗性鉴定的参考指标。  相似文献   

9.
不同杀菌剂对油菜根肿病的防效及对油菜产量损失的影响   总被引:3,自引:0,他引:3  
本研究使用5种杀菌剂和1种微肥于油菜苗期2~3片真叶期进行灌根处理,以传统的石灰处理方法比较,评价不同处理对油菜根肿病的防治效果和对油菜产量损失的影响。5种杀菌剂处理、微肥以及石灰处理均对油菜根肿病有较好的防效,其中50%多菌灵可湿性粉剂防效达90.82%;从产量损失方面比较,10%氰霜唑悬浮剂、50%多菌灵可湿性粉剂,75%百菌清可湿性粉剂和60%硫磺·敌磺钠可湿性粉剂处理可显著减少根肿病引起的产量损失;50%氟啶胺悬浮剂处理较对照增产不显著,而且对油菜生长有抑制作用;油菜根肿病的病情指数与油菜产量呈显著的负相关性,相关系数r=-0.796 2,油菜产量(y)与病情指数(x)的回归方程为y=-32.65x+2 372。  相似文献   

10.
Defoliators are common insect pests of soybean and often cause economic losses. Insecticides are the first option that farmers choose to minimize the damage caused by the defoliators, and the result is not only the emergence of resistance to insecticides in the pests but also environmental pollution. A field experiment carried out at the University of Agricultural Sciences, Dharwad, India, in 2013 and 2014 in the kharif season (June to September) tested nine intercrops in soybean – all grown as rain-fed crops – for their ability to reduce the damage caused by defoliators to soybean leaves and the effect on grain yield of soybean. Of the three species of defoliators, namely Spodoptera litura, Hedylepta indicata, and Diachrysia orichalcea, S. litura was the most severe. Maize and pigeonpea proved the most effective intercrops because of their phenology, repellent chemicals, and physical barriers and also because they were not the natural hosts of the defoliators and did not compete with soybean. In these two crops, the incidence of the defoliators and the extent of damage to soybean leaves were the lowest and the yields were the highest (3.56 t ha?1 in soybean–maize and 3.25 t ha?1 in soybean–pigeonpea).  相似文献   

11.
Abstract

Greenhouse and field experiments were conducted to study the preference of two scarabaeid beetles, Anomala cupripes Hope and A. expansa Bates, for soybean plants at various growth stages and the potential use of a trap cultivar to control these pests. Insects preferred to feed on 6–9‐week‐old plants compared to younger ones. This may be due to more foliage on the older plants, which is a source of food and a shelter for the insect from direct sunlight. Planting a cultivar with more foliage as a trap cultivar between rows of the agronomic cultivar attracted the beetles and reduced the infestation of the agronomic cultivar. The optimum distance to plant such a trap cultivar between rows of agronomic cultivar needs to be determined for each location.  相似文献   

12.
We investigated the damage and yield loss caused by two rodent species, Arvicanthis niloticus and Mastomys (Praomys) natalensis, in cereal crops in fields near Kano, northern Nigeria from August, 1990 to April, 1992. Using the random cluster technique, we selected 100 clusters of 30 hills in each rice and wheat field, and assessed damage fortnightly, using the Cut Tiller Count method. In premature crops, damage increased from tillering stages to the dough stages. Differences in the percentages of damage (yield loss) in mature rice (4.8% in 1990 and 12.6% in 1991) and in wheat (30.0% in 1991 and 21.7% in 1992) were statistically significant between years. Severe yield losses in wheat, compared to low and moderate levels in rice (grown for the most part during the rains), were probably a result of greater consumption of the wheat, grown entirely by irrigation during the dry season when other rodent food sources were less abundant. Results of ANOVA showed significant effects of developmental stage of the crop, year of cultivation, and their interactions on the magnitude of crop damage.  相似文献   

13.
Two potyvirus isolates from endive, originating from southern France (Ls252) and from the Netherlands (Ls265), that were highly and poorly pathogenic on lettuce, respectively, were compared with a common isolate (Ls1) of lettuce mosaic virus (LMV) and with two highly deviant Greek isolates fromHelminthia (Picris) echioides (Gr4) and endive (Gr5), earlier recognized as LMV. The isolates could not be distinguished by particle morphology and serology, and were all identified as LMV. Leaf curling, plant stunting and necrosis were more characteristic of the virus than mosaic. The isolates studied varied considerably on differential host species and a range of lettce cultivars including pathotype differentials of Pink et al. [1992b]. Ls1 and Ls265 reacte largely as pathotype II, including the common strain of the virus, but Ls265 was least pathogenic on lettuce. Ls252 fitted pathotype IV and was very similar to LMV-E (the Spanish strain). The Greek isolates were very similar to each other in causing very severe symptoms on some non-lettuce hosts and a number of lettuce cultuvars. In lettuce variectal reaction Gr4 resembled pathotype I, but Gr5 severely affected Salinas 88, resistant to pathotypes I, II and III, and it appears to be a novel pathotype. Genetic interaction between lettuce and LMV is not following a simple yes-or-no pattern, and it is not a mere matter of resistance versus susceptibility. Adoption of a more realistic resistance terminology is proposed. None of the lettuce cultivars tested was resistant to the most pathogenic isolate Ls252, but resistance to it was found in 2 out of 12 wildLactuca species tested (Lactuca perennis andL. tatarica) while the symptomless plants ofL. perennis clearly reacted in ELISA.  相似文献   

14.
15.
No internationally agreed differential set is available for characterization of virulences in populations of Puccinia triticina causing wheat leaf rust on durum wheat. In a first step, 73 potentially differential host genotypes were tested with 96 durum leaf rust isolates collected in France. A differential set, adapted to the local epidemiological context and useful for comparison with international studies was selected, including French commercial cultivars, Thatcher lines with Lr genes, and international cultivars. In the second step, a sample of 310 isolates collected in France from 1999 to 2009 was characterized on this set. Diversity was very low, as only five pathotypes were distinguished. Genotyping of a subset of 76 isolates according to 20 SSR markers confirmed this low diversity, with 73 isolates belonging to a single dominant genotype. Population was strongly shaped by cultivars, and the findings explain the successive breakdown of resistance sources deployed in French durum wheat cultivars. The gene Lr14a, suggested to be an efficient source of resistance in several European and American countries, was overcome by pathotypes frequent in France since 2000. Postulation of resistance genes in the commercial cultivars led to a proposed simplified version of the differential set. This study, providing new information about leaf rust resistance genes present in the French durum wheat germplasm, highlights the need to diversify sources of resistance to P. triticina in this germplasm. The results are also discussed in terms of relatedness and intercontinental migration of P. triticina on durum wheat.  相似文献   

16.
17.
草地贪夜蛾Spodoptera frugiperda自2019年1月入侵我国云南以来,快速蔓延为害,严重威胁我国的玉米生产和粮食安全。本研究基于云南省德宏州351份玉米农户调查数据,利用以直接经济损失和防治费用为基础的经济损失评估模型,估算了2019年草地贪夜蛾对德宏州玉米生产造成的经济损失,并分析了农户实际采用的防治措施。结果表明,2019年草地贪夜蛾对德宏州玉米生产造成的经济损失约为1 399.29万元,其中,玉米产量变化造成的直接经济损失约为366.51万元,农户防治投入增加和政府宣传、培训和防治等费用支出约为1 032.78万元。本研究不但为了解草地贪夜蛾对我国不同地区作物生产造成的经济损失提供例证,也为因地制宜地制定草地贪夜蛾防治策略提供科学依据。  相似文献   

18.
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici continues to be the most economically destructive disease of winter wheat throughout Ireland. Due to the widespread development of fungicide resistance in the Irish Z. tritici population, integrated strategies to control STB are increasingly necessary. A key component of such strategies will be the deployment of winter wheat cultivars with improved levels of STB resistance. Unfortunately, due to the nature of Z. tritici, such resistances are at risk of being overcome by the pathogen. In late summer 2020, foci of STB were observed across a range of winter wheat cultivars under evaluation for recommendation in Ireland. Common amongst these was the cultivar Cougar in each of their pedigree. To determine if the foci observed in 2020 resulted from strains virulent to Cougar, isolate collections were established and virulence screens conducted on Cougar and a range of the cultivars currently under evaluation. These confirmed the presence of Cougar-virulent strains in the Irish Z. tritici population, and that this virulence affects not just Cougar, but also cultivars derived from it. Although the foci observed in 2020 were in both fungicide-untreated and -treated plots, there was no evidence that these strains are more sensitive or resistant to fungicides compared to the wider Irish Z. tritici population, with moderate resistance to the SDHIs and azoles dominating. Combined, the present study confirms the need to ensure a diversity of control measures for STB, including ensuring a range of STB resistances are used.  相似文献   

19.
The effect of different soil amendments and biological control agents on soil-borne root diseases that cause significant economic losses in organic and other soil-based tomato production systems (Pyrenochaeta lycopersici and Verticillium albo-atrum) was compared. Organic matter inputs (fresh Brassica tissue, household waste compost and composted cow manure) significantly reduced soil-borne disease severity (measured as increased root fresh weight) and/or increased tomato fruit yield, with some treatments also increasing fruit number and/or size. Soil biological activity also increased with increasing organic matter input levels and there were significant positive correlations between soil biological activity, root fresh weight and fruit yield. This indicates that one mechanism of soil-borne disease control by organic matter input may be increased competition by the soil biota. Chitin/chitosan products also significantly reduced soil-borne disease incidence and increased tomato fruit yield, number and/or size, but had no effect on soil biological activity. Biological control products based on Bacillus subtilis and Pythium oligandrum and commercial seaweed extract (Marinure) and fish emulsion (Nugro)-based liquid fertilisers had no positive effect on soil-borne disease incidence and fruit yield, number and size. The use of ‘suppressive’ organic matter inputs alone or in combination with chitin/chitosan soil amendments can therefore be recommended as methods to control soil-borne diseases in organic and other soil-based production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号