首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Angular leaf spot severity was evaluated on Phaseolus beans which had been planted alone (monocrop) and also simultaneously with maize (intercrop) at Kabete, Kenya, in November 1986 (short rains), and at Kabete and Thika in April 1987 (long rains). Intercropping reduced the area under the disease progress curve (AUDPC) in the short rains at Kabete and at Thika in the long rains by 23–33% at bean: maize proportions of 2:1 for some leaf positions, but did not reduce AUDPC significantly at Kabete in the long rains. Additional treatments to evaluate bean density and planting pattern (row against random) conducted in the short rains had no effect on AUDPC, although disease was reduced by 12–17% at higher bean densities when maize was not present. Fertilization increased AUDPC by 135–205% in the long rains at both sites. Microclimatological observations made at Kabete during the long rains indicated reductions in leaf temperature and air temperature, and increases in relative humidity, in most plots. These changes were small, averaging 0·6°C, 0·2°C, and 1·8%, respectively. Wind velocity was reduced by 55–63% in the intercrop in relation to the monocrop. The results reflect the variable response of angular leaf spot to maize intercrops seen in other studies.  相似文献   

2.
Grey leaf spot disease of maize (Cercospora zeaemaydis) has seriously decreased grain yields in the province of KwaZulu-Natal, South Africa, and has spread to infect maize in neighbouring provinces. No commercial hybrids, resistant to the disease have so far been identified, and fungicides have been shown to reduce disease severity. The response of sixty-four commercial hybrids to grey leaf spot under fungicide treatment were studied over two seasons. Overall, fungicides reduced disease severity and linear regression of gain in yield against disease severity enables the identification of hybrids with optimum responses to fungicides. Under low disease levels hybrids responded less to fungicides than under high disease levels. The most susceptible hybrids had the highest responses in control of leaf-blighting and gain in yield. Hybrids with lower-than-predicted leaf-blighting also had lower-than-predicted yield responses, indicating these to be less susceptible to grey leaf spot. These less susceptible hybrids are likely to require fewer fungicide treatments than more susceptible hybrids and are at lesser risk of serious yield losses.Abbreviations GLS grey leaf spot - AUDPC area under disease progress curve  相似文献   

3.
Cultivated groundnut is susceptible to late leaf spot (LLS) caused by Phaeoisariopsis personata [(Berk. & M.A. Curtis) Aex] and resistance is low to moderate in the primary gene pool of groundnut. Closely related wild species in the secondary gene pool are highly resistant to the disease. All the closely related Arachis species are diploid and cultivated groundnut is a tetraploid. Utilization of diploid Arachis species to transfer LLS resistance is time consuming and cumbersome. New sources of Arachis hypogaea (also called synthetic groundnut) were developed at ICRISAT. These are tetraploids and the present investigation has shown that they are resistant to LLS.  相似文献   

4.
Integrating cultivars that are partially resistant with reduced fungicide doses offers growers an opportunity to decrease fungicide input but still maintain disease control. To use integrated control strategies in practice requires a method to determine the combined effectiveness of particular cultivar and fungicide dose combinations. Simple models, such as additive dose models (ADM) and multiplicative survival models (MSM), have been used previously to determine the joint action of two or more pesticides. This study tests whether a model based on multiplicative survival principles can predict the joint action of fungicide doses combined with cultivars of differing partial host resistance. Data from eight field experiments on potato late blight (Phytophthora infestans) were used to test the model; the severity of foliar blight was assessed and scores used to calculate the area under the disease progress curve (AUDPC). A subset of data, derived from the most susceptible cultivar, King Edward, was used to produce dose–response curves from which parameter values were estimated, quantifying fungicide efficacy. These values, along with the untreated values for the more resistant cultivars, Cara and Sarpo Mira, were used to predict the combined efficacy of the remaining cultivar by fungicide dose combinations. Predicted efficacy was compared against observations from an independent subset of treatments from the field experiments. The analysis demonstrated that multiplicative survival principles can be applied to describe the joint efficacy of host resistance and fungicide dose combinations.  相似文献   

5.
For wheat, the optimum time to apply fungicide to control disease on a given leaf layer is usually at, or shortly after, full leaf emergence. Data from field experiments on barley were used to investigate whether the same relationship was applicable to control of leaf blotch on barley. Replicated plots of winter barley were sown in the autumns of 1991, 1992 and 1993 at sites in southwest England with high risk of Rhynchosporium secalis infection. Single fungicide treatments at four doses (0·25, 0·5, 0·75 or 1·0 times the label rate) were applied at one of eight different spray times, starting in mid-March in each year, with intervals of 10–11 days between spray timings. Disease was assessed every 10–11 days and area under the disease progress curve (AUDPC) values were used to construct fungicide dose by spray time response surfaces for each of the upper four leaves, for each year. Spray timings shortly before leaf emergence were found to minimize the AUDPC for each year and leaf layer, and also the effective dose (the dose required to achieve a specified level of control), similar to wheat. Fungicide treatments on barley were effective for a longer period before leaf emergence than afterwards, probably because treatments before emergence of the target leaf reduced inoculum production on leaves below. This partly explains why fungicides tend to be applied earlier in the growth of barley compared with wheat.  相似文献   

6.
Investigations into the relative roles of Alternaria leaf spot and potassium deficiency in causing premature defoliation of cotton showed that severe leaf spotting developed only on plants already showing deficiency symptoms. Defoliation was delayed or reduced by either the application of potassium fertilizer or by fungicide sprays, but significant yield increases required both fertilizer and fungicide. Removal of flowers also prevented the development of deficiency symptoms and prevented the leaf spot disease. Differences between cultivars in susceptibility to the disease were linked to their sensitivity to low levels of available potassium.  相似文献   

7.
The cereal–legume cropping system is a common practice across the tropical world. However, there are limited quantitative data on the effect of cereal–legume intercropping on weed species diversity. A study was conducted in the Guinea savanna zone of Ghana to evaluate the effect of maize–soybean intercropping on yield productivity and weed species control. The treatments used include three maize maturity types (extra‐early: Abontem, early: Sammaz 27 and medium: Obatanpa) intercropped with soybean at three intraspacing (10, 20 and 30 cm), and their sole crop treatments were laid in a randomized complete block design with three replications. Results showed that the land equivalent ratio (LER) for the intercrops was above 1, indicating better intercrop productivity than the sole crops. An average of 40% land was saved for the intercrops compared with the sole crops. Intercropping Sammaz 27 maize with soybean significantly increased LER by 9% compared to the other types. Intercropping maize with soybean significantly reduced weed biomass at 6 and 9 weeks after planting (WAP) and at harvest relative to the sole maize. The weed biomass at 6 and 9 WAP and harvest increased (p < .05) with increasing soybean intraspacing. The grass and broadleaf weed species count at 6 WAP and harvest from the sole crops were significantly higher than that of the intercrops. The results suggest that intercropping early maize maturity type with soybean at 10 cm intraspacing could be used to increase grain yield, LER and control of grass and broadleaf weeds in a maize‐based cropping system in the Guinea savanna zones of West Africa.  相似文献   

8.
Leaf scald caused by Monographella albescens reduces the photosynthetic area, causing yield losses in rice. This study investigated the efficacy of the rhizobacteria Burkholderia pyrrocinia (BRM‐32113) and Pseudomonas fluorescens (BRM‐32111), combined with silicon (Si) fertilization, to reduce lesion size and the area under the disease progress curve (AUDPC), as well as to minimize the negative effects on gas exchange, chlorophyll a fluorescence, chlorophyll content and the activity of oxidative stress enzymes. The experiment used a completely randomized design with four replications and seven treatments. Compared with plants only fertilized with Si, plants fertilized with Si and treated with BRM‐32113 showed reductions of 22% in scald lesion expansion and 37% in AUDPC, a 27% increase in the rate of CO2 assimilation (A), a 33% decrease in the internal CO2 concentration (Ci), and a 40% increase in ascorbate peroxidase activity. It was therefore concluded that the combination of BRM‐32113 with Si fertilization reduces the severity of leaf scald, protecting the photosynthetic apparatus, thus representing a sustainable method of reducing the loss of income caused by leaf scald in rice.  相似文献   

9.
Plant defence elicitors are compounds that can induce host defence responses against plant pathogens and offer a novel strategy for disease management. Disease control by elicitors can be inconsistent and is often dependent on the crop, the variety and the environment. The use of foliar application of defence elicitors to control light leaf spot (LLS) disease caused by Pyrenopeziza brassicae in the brassica crops winter oilseed rape (WOSR) and Brussel sprouts was evaluated in field trials across multiple years. Elicitor responses in WOSR varied between years. Yield benefits were also inconsistent and did not reflect the level of disease control. Results with Brussel sprouts were more consistent although variation between variety, trial site and year were observed. In particular the salicylic acid analog Acibenzolar-S-Methyl, in the commercial product Bion®, demonstrated good disease control across the field trial sites in the early maturing Brussel sprout variety Cobus. Levels of LLS were consistently reduced when Bion® was alternated within a standard fungicide programme, applied as an individual spray or in combination with other defence elicitors. When applied as a root drench or seed soak Bion® also reduced symptom development of the soil-borne brassica disease clubroot, caused by Plasmodiophora brassicae, in WOSR. These results indicate that defence elicitors such as Bion® can be used as an additional disease management tool alongside host resistance and standard fungicide programmes to protect brassica crops.  相似文献   

10.
Abstract

Late leaf spot (LLS, Phaeoisariopsis personata) and rust (Puccinia arachidis) are the two major biotic constraints of groundnut (Arachis hypogaea L.) of global importance. To identify economic and eco-friendly disease management options, we evaluated extracts of 38 plant spp. of 23 families, for their antifungal activity. Aqueous leaf extracts (20%, w/v) of Prosopis juliflora and Lycopersicon esculentum completely inhibited the in vitro germination of P. personata and P. arachidis, and extracts of Achras sapota, Cyamposis tetragonolobus, Piper betle and Tagetus patula were inhibitory by >95%. In the greenhouse, the severity of LLS and rust corresponded with the time interval between the foliar application of leaf extract and fungal inoculum. Extract of P. juliflora (2%, w/v) in simultaneous application reduced the lesion frequency of LLS and rust by ~75%, and 35.7% and 50.7% in a prophylactic spray of 96 h before the pathogen inoculation. The extract had no effect on the phenolic content of groundnut leaves both during LLS and rust infections. In the field, P. juliflora extract applied four times at 15-day intervals, was effective against LLS and rust up to 95 days after sowing (d.a.s.). Foliar application of P. juliflora extract at 45, 75 and 90 d.a.s. and chlorothalonil at 60 d.a.s. effectively reduced foliar diseases severity and increased the pod yields by 81–98%. This study identified P. juliflora extract as a significant component for the integrated management of groundnut foliar diseases.  相似文献   

11.
Kishore GK  Pande S  Podile AR 《Phytopathology》2005,95(10):1157-1165
ABSTRACT Late leaf spot (LLS), caused by Phaeoisariopsis personata, is a foliar disease of groundnut or peanut (Arachis hypogaea) with high economic and global importance. Antifungal and chitinolytic Bacillus circulans GRS 243 and Serratia marcescens GPS 5, selected among a collection of 393 peanut-associated bacteria, were applied as a prophylactic foliar spray and tested for control of LLS. Chitin-supplemented application of B. circulans GRS 243 and S. marcescens GPS 5 resulted in improved biological control of LLS disease. Supplementation of bacterial cells with 1% (wt/vol) colloidal chitin reduced lesion frequency by 60% compared with application of bacterial cells alone, in the greenhouse. Chitinsupplemented application of GRS 243 and GPS 5 also resulted in improved and stable control of LLS in a repeated field experiment and increased the pod yields by 62 and 75%, respectively, compared with the control. Chitin-supplemented application of GPS 5 was tested in six onfarm trials, and the increase in pod yields was up to 48% in kharif (rainy season). A 55-kDa chitinase was purified from the cell-free culture filtrate of GPS 5 by affinity chromatography and gel filtration. Purified chitinase of S. marcescens GPS 5 (specific activity 120 units) inhibited the in vitro germination of P. personata conidia, lysed the conidia, and effectively controlled LLS in greenhouse tests, indicating the importance of chitinolysis in biological control of LLS disease by GPS 5.  相似文献   

12.

Field trials were conducted during the rainy seasons of 1993/94 for chemical control of groundnut leaf spot using a single spray. A fungicide mixture ofcarbendazim 0.05%+mancozeb 0.2% was applied once in different treatments. Spray timings varied from 30 d.a.s. to 80 d.a.s. at 10-day intervals. Spray application reduced the percent disease index in all treatments. A statistically significant increase in pod yield was obtained in treatments sprayed up to 50 d.a.s. in 1993. The yield data were not significantly different in 1994. Sprays at 40 d.a.s. in 1993 and 50 d.a.s. in 1994 gave maximum returns. The cost of treatmentdid notvary significantly. The benefitto cost ratio oftreatments ranged from 1.1 to 8.1 in 1993 and 4.1 to 5.5 in 1994.  相似文献   

13.
Although fungicide resistance in crop pathogens is a global threat to food production, surprisingly little is known about the evolutionary processes associated with the emergence and spread of fungicide resistance. Early stages in the evolution of fungicide resistance were evaluated using the wheat pathogen Zymoseptoria tritici, taking advantage of an isolate collection spanning 20 years in Oregon, USA, and including two sites with differing intensity of fungicide use. Sequences of the mitochondrial cytb protein conferring single‐mutation resistance to QoI fungicides and the nuclear CYP51 gene implicated in multiple‐mutation resistance to azole fungicides were analysed. Mutations associated with resistance to both fungicides were absent in the 1992 isolates, but frequent in the 2012 collection, with higher frequencies of resistance alleles found at the field site with more intensive fungicide use. Results suggest that the QoI resistance evolved independently in several lineages, and resulted in significant mitochondrial genome bottlenecks. In contrast, the CYP51 gene showed signatures of diversifying selection and intragenic recombination among three phylogenetic clades. The findings support a recent emergence of resistance to the two fungicide classes in Oregon, facilitated by selection for mutations in the associated resistance genes.  相似文献   

14.
Mycosphaerella species that cause the ‘Sigatoka disease complex’ account for significant yield losses in banana and plantain worldwide. Disease surveys were conducted in the humid forest (HF) and derived savanna (DS) agroecological zones from 2004 to 2006 to determine the distribution of the disease and variation among Mycosphaerella species in Nigeria. Disease prevalence and severity were higher in the HF than in the DS zone, but significant (P < 0·001) differences between agroecological zones were only observed for disease severity. A total of 85 isolates of M. fijiensis and 11 isolates of M. eumusae were collected during the survey and used to characterize the pathogenic structure of Mycosphaerella spp. using a putative host differential cultivar set consisting of Calcutta‐4 (resistant), Valery (intermediate) and Agbagba (highly susceptible). Area under disease progress curve (AUDPC) was higher on all cultivars when inoculated with M. eumusae than with M. fijiensis, but significant (P < 0·05) differences between the two species were only observed on Valery. Based on the rank‐sum method, 8·3% of the isolates were classified as highly aggressive and 46·9% were classified as aggressive. About 11·5% of all the isolates were classified as least aggressive, and all of these were M. fijiensis. The majority of M. eumusae isolates (seven out of 11; 64%) were classified as aggressive. A total of nine pathotype clusters were identified using cluster analysis of AUDPC. At least one M. fijiensis isolate was present in all the nine pathotype clusters, while isolates of M. eumusae were present in six of the nine clusters. Isolates in pathotype clusters III and V were the most aggressive, while those in cluster VIII were the least aggressive. Shannon’s index (H) revealed a more diverse Mycosphaerella collection in the DS zone (H = 1·81) than in the HF (H = 1·50) zone, with M. fijiensis being more diverse than M. eumusae. These results describe the current pathotype structure of Mycosphaerella in Nigeria and provide a useful resource that will facilitate screening of newly developed Musa genotypes for resistance against two important leaf spot diseases of banana and plantain.  相似文献   

15.
When fungicide efficacy declines due to the development of resistance in the pathogen population, growers have to either change to an alternative mode of action or adjust their treatment programme. Adjustments may include either decreasing (or stopping) use of the mode of action, or increasing the total dose applied (by increasing number of applications and/or dose per application, where permitted) to try to maintain effective disease control. This study explores the circumstances under which increasing/decreasing total applied fungicide is financially optimal. A model based on field data is used to optimize the dose of fungicide applied when fungicide resistance develops in a pathogen population. The model is used to explore contrasting pathosystems and fungicide classes. When qualitative fungicide resistance develops, the shape of the disease–yield loss relationship determines whether the optimal total dose increases or decreases with increasing frequency of resistance in the pathogen population. When quantitative fungicide resistance develops, such that effective control can still be obtained with doses close to the maximum permitted dose, the optimal dose increases with increasing frequency of resistance in the pathogen population.  相似文献   

16.
玉米弯孢叶斑病研究现状、问题与展望   总被引:4,自引:1,他引:4  
玉米弯孢叶斑病[Curvularia lunata(Wakker)Boed]是我国近几年玉米上发生的一种重要病害,对玉米高产稳产构成严重威胁。本文介绍了玉米弯孢叶斑病病原、发生规律、危害损失、抗病机制以及防治技术等主要研究进展及其存在问题。  相似文献   

17.
ABSTRACT Three field experiments were conducted in 1997, 1998, and 1999 to investigate the effects of angular leaf spot and rust, separately or combined, on host growth and yield of individual bean plants (Phaseolus vulgaris). In each experiment, three treatments were established by inoculating cv. Carioca with Phaeoisariopsis griseola, Uromyces appendiculatus, or with both pathogens. An additional control treatment was not inoculated, but was sprayed with a fungicide. In the 1997 and 1999 experiments, angular leaf spot reached higher disease levels than rust, whereas in 1998, rust was more severe than angular leaf spot. Host growth, expressed as healthy leaf area duration (HAD), and yield were the highest in 1997 and lowest in 1998. In each experiment, the treatments did not differ significantly to the area under leaf area progress curve, HAD, and healthy leaf area absorption (HAA). All inoculated treatments had significantly more severe disease and less yield than the control treatment. Based on the analysis of 60 plants in each experiment, yield was not related to the areas under disease progress curve for either or both diseases. In 1997 and 1999, yield was related to HAD (R(2) = 0.57 and 0.43) and HAA(R(2) = 0.60 and 0.55). Based on the combined analysis of all 36 plots, angular leaf spot reduced the leaf area because of defoliation, whereas rust did not affect the leaf area. Rust reduced yield more than four times that of angular leaf spot, although the decrease in photosynthesis to angular leaf spot was twice that of rust.  相似文献   

18.
Two field experiments (Exp. 1 and Exp. 2) were carried out to assess the physiological performance and grain yield of wheat cultivars BR‐18 (moderately resistant) and Guamirim (susceptible) inoculated with Pyricularia oryzae in plots treated or untreated with Ópera (fungicide 13.3% epoxiconazole + 5% pyraclostrobin). Results from regression analyses indicated that spike and leaf blast severity at 10–14 days after inoculation (dai) were associated with greater yield losses (highest negative slope) than severity at 18–22 dai. Relative to untreated Guamirim, there were 0.3% and 16% increases in Exp. 1 and 2, respectively, for untreated BR‐18 (resistance alone). For fungicide treatment alone, the mean yield of Guamirim increased by 20% and 61% in Exp. 1 and 2, respectively, relative to the untreated fungicide control, whereas for the fungicide treated BR‐18, the mean yield increased by 26% and 83% in Exp. 1 and 2, respectively. Fungicide application and cultivar resistance resulted in higher measures of leaf health and photosynthetic performance in both spikes and leaves than in the untreated susceptible reference treatment. The results from this study may be useful in future efforts to develop crop loss models and management guidelines for wheat blast.  相似文献   

19.
ABSTRACT Recent reports have shown induction of resistance to Rhizoctonia root rot using nonpathogenic strains of binucleate Rhizoctonia spp. (np-BNR). This study evaluates the biocontrol ability of several np-BNR isolates against root and foliar diseases of cotton in greenhouse trials, provides evidence for induced systemic resistance (ISR) as a mechanism in this biocontrol, and compares the disease control provided by np-BNR with that provided by the chemical inducer benzothiadiazole (BTH). Pretreatment of cotton seedlings with np-BNR isolates provided good protection against pre- and post-emergence damping-off caused by a virulent strain of Rhizoctonia solani (AG-4). Seedling stand of protected cotton was significantly higher (P < 0.05) than that of nonprotected seedlings. Several np-BNR isolates significantly reduced disease severity. The combination of BTH and np-BNR provided significant protection against seedling rot and leaf spot in cotton; however, the degree of disease reduction was comparable to that obtained with np-BNR treatment alone. Significant reduction in leaf spot symptoms caused by Alternaria macrospora occurred on cotyledons pretreated with np-BNR or sprayed with BTH, and the np- BNR-treated seedlings had significantly less leaf spot than BTH-treated seedlings. The results demonstrate that np-BNR isolates can protect cotton from infections caused by both root and leaf pathogens and that disease control was superior to that observed with a chemical inducer.  相似文献   

20.
Although much is known about the effect of climatic conditions on the development of peacock leaf spot of olive, field‐operational models predicting disease outbreaks are lacking. With the aim of developing such models, a 10‐year survey was conducted to relate leaf infection to climate parameters that can be easily monitored in the field. As outbreaks of disease are known to be linked to rain, models were evaluated for their ability to predict whether infection would occur following a rain event, depending on air temperature and duration of relative humidity above 85%. A total of 134 rain events followed by confirmed leaf infection and 191 rain events not followed by detectable infection were examined. The field data were adequately fitted (both specificity and sensitivity >0·97) with either a multilayer neural network or with two of six tested regression models describing high boundary values of high humidity duration, above which no infection occurred over the temperature range, and low boundary values below which no infection occurred. The data also allowed the selection of a model successfully relating the duration of latent period (time between infection and the first detection of leaf spots) as a function of air temperature after the beginning of rain (R2 > 0·98). The predictive abilities of these models were confirmed during 2 years of testing in commercial olive orchards in southern France. They should thus provide useful forecasting tools for the rational application of treatments and foster a reduction in fungicide use against this major disease of olive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号