首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rust fungi in the genus Melampsora usually cause disease on hosts in the Salicaceae. Identification of Melampsora species is often complicated due to few differences in spore morphology and little publicly available comparative sequence data. Weeping willow trees (primarily Salix babylonica and its hybrids) have been reported to be infected by 11 Melampsora species; however, most of these records are based on morphological characterization. New collections of rust fungi on weeping willows from the central USA were analysed using a combination of morphology, ITS and LSU rDNA sequencing, and host data to determine that they represent an undescribed rust fungus, Melampsora ferrinii sp. nov. Additional studies of herbarium material revealed that M. ferrinii has occasionally been collected but identified as M. epitea. In addition to North America, M. ferrinii is also present in South America and has been infecting weeping willows there since at least the 1990s.  相似文献   

2.
Molecular phylogenetic analyses of New Zealand rust fungi suggested that four taxa, Aecidium otagense on Clematis spp., Puccinia tiritea on Muehlenbeckia spp., Puccinia rhei‐undulati sensu auct. NZ, non (Dietel) Hirats. f. on Rheum ×rhabarbarum, and an unidentified Puccinia species on Rumex sagittatus, are a single species. Morphological studies and multilocus molecular data, together with inoculation studies, confirmed this finding. This species is only the third heteroecious rust fungus known to be native to New Zealand.  相似文献   

3.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

4.
Members of the Phytophthora citricola complex (Phytophthora clade 2c), such as P. plurivora, are destructive pathogens of trees and shrubs in nursery, landscape and forest settings worldwide. During surveys of Phytophthora species from streams and rivers in Massachusetts and North Carolina, a novel species in the P. citricola complex was recovered. Based on sequences from three nuclear (ITS, β‐tub and tef1) and two mitochondrial (cox1 and nadh1) loci, morphological characters, temperature–growth relationships and host plant inoculations, this novel species is described as Phytophthora caryae sp. nov. Phytophthora caryae resembles several other species in the P. citricola complex, demonstrating homothallism and producing paragynous antheridia and semipapillate and noncaducous sporangia. However, P. caryae exhibits smaller sexual structures, higher rates of oogonia with a tapered base and sporangia with an offset attachment of the sporangiophores. Phylogenetic analyses using maximum likelihood and Bayesian inference placed isolates of P. caryae into a unique clade with significant statistical support. Based on the mitochondrial dataset, P. caryae is most closely related to P. pini and P. citricola III, which are believed to be native in eastern North America. Inoculations of P. caryae on 1‐year‐old twigs of 12 tree species representing nine genera resulted in under‐bark lesions on species of Carya and Juglans. Sapling inoculations under greenhouse conditions suggest that P. caryae may be pathogenic to shagbark hickory (Carya ovata) but not to black walnut (Juglans nigra).  相似文献   

5.
Two new pathogens of pyrethrum, described as Paraphoma chlamydocopiosa and Paraphoma pye, isolated from necrotic leaf lesions on pyrethrum plants in northern Tasmania, Australia, were identified using morphological characters, phylogenetic analysis of the internal transcribed spacer (ITS), elongation factor 1‐α (EF1‐α) and β‐tubulin (TUB) genes, and pathogenicity bioassays. Bootstrap support in the combined and individual gene region phylogenetic trees supported the two species that were significantly different from the closely related P. chrysanthemicola and P. vinacea. Morphological characteristics also supported the two new species, with conidia of P. chlamydocopiosa being considerably longer and wider than either P. chrysanthemicola or P. vinacea, and P. pye being distinct in forming bilocular pycnidia. Glasshouse pathogenicity tests based on root dip inoculation resulted in P. chlamydocopiosa and P. pye infecting the crown and upper root tissues of pyrethrum plants, and significant reduction in biomass 2 months after inoculation. Both of these Paraphoma species caused leaf lesions during in vitro and in vivo bioassays 2 weeks after foliar spray inoculation. Although P. chlamydocopiosa and P. pye were shown to be crown rot pathogens, they were also commonly isolated from leaves of diseased plants in pyrethrum fields of northern Tasmania.  相似文献   

6.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

7.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

8.
The rust fungus Puccinia komarovii var. glanduliferae was first identified infecting Impatiens glandulifera in its native range (western Himalayas) between 2006 and 2010. Subsequently, it was imported into quarantine in the UK for evaluation as a classical biocontrol agent. To assess the safety of the rust, plant species relevant to Europe were tested for susceptibility. To confirm the life cycle, all infective spore stages were inoculated on I. glandulifera to follow disease progression. Teliospores were primed using bleaching and low temperatures to break dormancy. Temperature and dew period experiments using urediniospores were conducted to assess the parameters required for infection. Of the 74 plant species tested, only I. balsamina, an ornamental species, was fully susceptible to urediniospore inoculum. The life cycle of the rust – an autoecious, full‐cycled species with five spore stages – was confirmed. Urediniospores were infective between 5 and 25°C, with an optimum at 15°C. A minimum of 8 h dew period was required to achieve consistent infection. Based on a pest risk assessment, the rust poses no threat to native biodiversity within EU Member States; making P. komarovii var. glanduliferae a suitable candidate as the first fungal classical biocontrol agent against an exotic weed in the region.  相似文献   

9.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

10.
A severe dieback of Acer pseudoplatanus trees was noticed in planted forest stands in northern Italy in 2010. Affected trees showed collar rot and aerial bleeding cankers along the stems, leading to crown dieback and eventually death. An unknown Phytophthora species was consistently isolated from necrotic bark and xylem tissue and from rhizosphere soil. Based on its unique combination of morphological and physiological characters and phylogenetic analysis, this new taxon is here described as Phytophthora acerina sp. nov. Phylogenetic analysis of ITS, cox1 and β‐tubulin gene regions demonstrated that P. acerina is unique and forms a separate cluster within the ‘P. citricola complex’, closely related to P. plurivora. Phytophthora acerina is homothallic with smooth‐walled oogonia, thick‐walled, mostly aplerotic oospores with a high abortion rate, paragynous antheridia, and persistent, morphologically variable semipapillate sporangia. Four to 5‐week‐old cultures produced globose to subglobose, appressoria‐like and coralloid hyphal swellings and characteristic stromata‐like hyphal aggregations. Optimum and maximum temperatures for growth are 25°C and 32°C, respectively. Genetic uniformity of all 15 studied isolates and the apparent absence of this species in the extensive surveys of nurseries, forests and seminatural ecosystems conducted in the previous two decades across Europe indicate a recent clonal introduction to northern Italy. Under‐bark inoculation tests demonstrated high aggressiveness of P. acerina to A. pseudoplatanus indicating that this pathogen might be a serious risk to maple plantations and forests in Europe.  相似文献   

11.
Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum is a major disease of oilseed rape (Brassica napus). During infection, large, white/grey lesions form on the stems of the host plant, perturbing seed development and decreasing yield. Due to its ability to produce long‐term storage structures called sclerotia, S. sclerotiorum inoculum can persist for long periods in the soil. Current SSR control relies heavily on cultural practices and fungicide treatments. Cultural control practices aim to reduce the number of sclerotia in the soil or create conditions that are unfavourable for disease development. These methods of control are under increased pressure in some regions, as rotations tighten and inoculum levels increase. Despite their ability to efficiently kill S. sclerotiorum, preventative fungicides remain an expensive gamble for SSR control, as their effectiveness is highly dependent on the ability to predict the establishment of microscopic infections in the crop. Failure to correctly time fungicide applications can result in a substantial cost to the grower. This review describes the scientific literature pertaining to current SSR control practices. Furthermore, it details recent advances in alternative SSR control methods including the generation of resistant varieties through genetic modification and traditional breeding, and biocontrol. The review concludes with a future directive for SSR control on oilseed rape.  相似文献   

12.
Root and stem extracts of Fumaria parviflora showed strong nematicidal activity against Meloidogyne incognita in in vitro and in planta experiments. Phytochemical screening of F. parviflora revealed the presence of seven classes of bioactive compounds (alkaloids, flavonoids, glycosides, tannins, saponins, steroids and phenols). Quantitative determination of the plant extracts showed the highest percentages of alkaloids (0·9 ± 0·04) and saponins (1·3 ± 0·07) in the roots and total phenolic contents in the stem (16·75 ± 0·07 μg dry g?1). The n‐hexane, chloroform, ethyl acetate and methanol extracts of roots and stems at concentrations of 3·12, 6·24, 12·5, 25·0 and 50·0 mg mL?1, significantly inhibited hatching and increased mortality of second‐stage juveniles (J2s) compared with water controls. Percentage J2 mortality and hatch inhibition were directly related to exposure time. In pot trials with tomato cv. Rio Grande, root and stem extracts at concentrations of 1000, 2000 and 3000 ppm, applied as soil drenches, significantly reduced the number of galls, galling index, eggs masses, eggs and reproduction factor compared with the water control. Regardless of concentration, all the extracts significantly increased the host plant growth parameters studied. The n‐hexane extracts from the roots and stem were the most active, followed by the methanol ones, at all concentrations. The in vitro and in planta results suggest that extracts from the roots and stem of F. parviflora may be potential novel nematicides.  相似文献   

13.
Nine bacteriophages infecting Dickeya spp. biovar 3 (‘Dickeya solani’) were isolated from soil samples collected in different regions in Poland. The phages have a typical morphology of the members of the order Caudovirales, family Myoviridae, with a head diameter of c. 90–100 nm and tail length of c. 120–140 nm. In host range experiments, phage ?D5 expressed the broadest host range, infecting members of all Dickeya spp., and phage ?D7 showed the narrowest host range, infecting isolates of Dickeya dadantii and ‘D. solani’ only. None of the phages was able to infect Pectobacterium spp. isolates. All phages were prone to inactivation by pH 2, temperature of 85°C and by UV illumination for 10 min (50 mJ cm?2). Additionally, phages ?D1, ?D10 and ?D11 were inactivated by 5 m NaCl and phage ?D2 was inactivated by chloroform. Phages ?D1, ?D5, ?D7 and ?D10 were characterized for optimal multiplicity of infection and the rate of adsorption to the bacterial cells. The latent period was 30 min for ?D1, 40 min for ?D5, 20–30 min for ?D7 and 40 min for ?D10. The estimated burst size was c. 100 plaque‐forming units per infected cell. The bacteriophages were able to completely stop the growth of ‘D. solaniin vitro and to protect potato tuber tissue from maceration caused by the bacteria. The potential use of bacteriophages for the biocontrol of biovar 3 Dickeya spp. in potato is discussed.  相似文献   

14.
Since the 1980s a new disease has been affecting Australian lychee. Pepper spot appears as small, black superficial lesions on fruit, leaves, petioles and pedicels and is caused by Colletotrichum gloeosporioides, the same fungus that causes postharvest anthracnose of lychee fruit. The aim of this study was to determine if a new genotype of C. gloeosporioides is responsible for the pepper spot symptom. Morphological assessments, arbitrarily‐primed PCR (ap‐PCR) and DNA sequencing studies did not differentiate isolates of C. gloeosporioides from anthracnose and pepper spot lesions. The ap‐PCR identified 21 different genotypes of C. gloeosporioides, three of which were predominant. A specific genotype identified using ap‐PCR was associated with the production of the teleomorph in culture. Analysis of sequence data of ITS and β‐tubulin regions of representative isolates did not group the lychee isolates into a monophyletic clade; however, given the majority of the isolates were from one of three genotypes found using ap‐PCR, the possibility of a lychee specific group of C. gloeosporioides is discussed.  相似文献   

15.
White mould, caused by Sclerotinia sclerotiorum, is one of the most threatening fungal diseases occurring across major bean production regions worldwide. In Argentina, under favourable weather conditions, up to 100% seed yield losses occur on susceptible common bean cultivars. The aim of this study was to characterize the diversity of S. sclerotiorum isolates from six dry bean fields in the main production area of Argentina by means of molecular, morphological (mycelium colour, number and pattern of sclerotia distribution) and pathogenic approaches. Among 116 isolates analysed, high genotypic and morphological variability was observed. A total of 52 mycelial compatibility groups (MCGs) and 59 URPs (universal rice primers) molecular haplotypes were found. All the MCGs were location specific, while only 12% of the URP haplotypes were shared among locations. The molecular analysis of variance revealed a significant differentiation among populations, with higher genetic variability within the populations analysed than among them. The aggressiveness of the isolates towards bean seedlings was assessed in the greenhouse. Most of the isolates were highly aggressive, while no variation among locations was observed. The information generated in the present study provides, for the first time, information on the variability of S. sclerotiorum associated with white mould in the main common bean production area in Argentina. In addition, the findings suggest the occurrence of both clonal and sexual reproduction in the populations analysed. This work contributes to the development of sustainable management strategies in bean production aimed to minimize yield losses due to white mould.  相似文献   

16.
Bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), is a disease that is spreading rapidly in several kiwifruit‐producing countries, causing significant economic losses. In 2011, it was detected for the first time in Spain, in the south of Galicia (northwest Spain). Kiwifruit orchards were therefore inspected and sampled in 2011 and 2012 to determine the pathogen distribution, and the isolates obtained were characterized by morphology, fatty acids profile, biochemical tests and molecular techniques. Isolates were obtained from Actinidia deliciosa ‘Hayward’ (from leaves, canes, flower buds, fruits and roots), from A. deliciosa ‘Summer’, from Actinidia chinensis ‘Jin Tao’ (from canes and leaves) and from A. chinensis pollinator ‘Belén’ (from canes). Results of the analysis of the cfl gene (phytotoxin production‐related), the tox–argK gene cluster and phylogenetic analysis of the cts gene demonstrated that all Psa isolates from northwest Spain correspond to the Psa3 population, which includes strains of haplotype 2. This is the first record of Psa3 and haplotype 2 in Spain.  相似文献   

17.
The relationship between initial soil inoculum level of Spongospora subterranea f. sp. subterranea (Sss) and the incidence and severity of powdery scab on potato tubers at harvest was investigated. In all experiments soil inoculum level of Sss (sporeballs/g soil) was measured using a quantitative real‐time PCR assay. Of 113 commercial potato fields across the UK, soil inoculum was detected in 75%, ranging from 0 to 148 Sss sporeballs/g soil. When arbitrary soil inoculum threshold values of 0, <10 and >10 sporeballs/g soil were set, it was observed that the number of progeny crops developing powdery scab increased with the level of inoculum quantified in the field soil preplanting. In four field trials carried out to investigate the link between the amount of inoculum added to the soil and disease development, disease incidence and severity on progeny tubers was found to be significantly (P < 0·01) greater in plots with increasing levels of inoculum incorporated. There was a cultivar effect in all years, with disease incidence and severity scores being significantly greater in cvs Agria and Estima than in Nicola (P < 0·01).  相似文献   

18.
Fusarium oxysporum f. sp. phaseoli (Fop) is a devastating pathogen that can cause significant economic losses and can be introduced into fields through infested Phaseolus vulgaris (common bean) seeds. Efficient seed health testing methods can aid in preventing long‐distance dissemination of this pathogen by contaminated seeds. In order to improve detection of Fop in seed, a rapid, accurate and sensitive real‐time PCR assay (qPCR) protocol was developed for detection of Fop in common bean seeds. Seed lots of seven cultivars with infection incidence ranging from 0·25 to 20% were prepared by mixing known amounts of Fop‐infected seeds with Fop‐free seeds. Direct comparisons between SYBR Green and TaqMan qPCR methods were performed using primers based on the Fop virulence factor ftf1. The primers developed in this study produced a 63 bp product for highly virulent strains of Fop but did not produce an amplicon for nonpathogenic or weakly pathogenic isolates of F. oxysporum from P. vulgaris or other hosts. Under optimized conditions, both qPCR assays detected Fop infection at low levels (0·25%); however, the results suggest the TaqMan assay was more reliable at quantification than the SYBR Green assay. Linear regression models were fitted to the relationships between results of qPCR assays and infection incidence, but the models differed among cultivars. Fungal biomass per seed differed among cultivars and was related to seed size. The results indicate that the TaqMan assay developed in this study is a useful tool for the detection and quantification of Fop in bean seeds.  相似文献   

19.
Resistant annual and herbaceous perennial plant species were identified as key hosts which allow Phytophthora cinnamomi to persist on severely impacted black gravel sites within the Eucalyptus marginata (jarrah) forest of southwest Western Australia. Of the annual and herbaceous perennial plant species present on black gravel sites, 15 out of 19 species were found to be hosts of P. cinnamomi, and 10 of these were symptomless hosts. In particular, the native annual Trachymene pilosa and the two native herbaceous perennials Stylidium diuroides and Chamaescilla corymbosa were commonly found to be hosts of the pathogen. Species from 12 new genera including three from new families (Crassulaceae, Droseraceae and Primulaceae) are reported for the first time to be hosts of P. cinnamomi. The species from which P. cinnamomi was recovered were the native species: Chamaescilla corymbosa, Crassula closiana, Drosera erythrorhiza, Hydrocotyle callicarpa, Levenhookia pusilla, Paracaleana nigrita, Podotheca angustifolia, Pterochaeta paniculata, Rytidosperma caespitosum, Siloxerus multiflorus, Stylidium diuroides and Trachymene pilosa, and the introduced annual weeds Hypochaeris glabra, Lysimachia arvensis and Pentameris airoides.  相似文献   

20.
Cereal cyst nematode (CCN), Heterodera avenae, is one of the most important pathogens of wheat worldwide, and causes significant yield losses. Research on CCN–wheat interactions is hampered by the lack of an effective model pathosystem. This study investigated the potential of the model cereal Brachypodium distachyon (Bd21‐3) and diploid wheat 2A (G1812) and 2D (AL8/78) as model hosts for CCN. Nematode infection analysis showed that although some CCN penetrated Bd21‐3 roots, these nematodes failed to develop to the later developmental stages or form cysts, indicating B. distachyon is not a host for CCN. A strong burst of reactive oxygen species (ROS) within Bd21‐3 roots infected with CCN was induced 3 days after infection and the expression of seven ROS‐producing genes was significantly increased. In contrast, CCN completed its life cycle in both diploid wheat 2A and 2D, and formed normal syncytia in these hosts. Although CCN developmental processes within both diploid wheat 2A and 2D were very similar to those in the susceptible control, the number of cysts formed on diploid wheat 2D was less than those formed on diploid wheat 2A and the susceptible control, indicating that diploid wheat 2A was a more suitable host for CCN than 2D. This is the first report of a potential new pathosystem for CCN–host interactions using diploid wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号