首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out in controlled environment rooms reflecting field situations. In the presence of the devastating soilborne pathogen Phytophthora clandestina, subterranean clover (Trifolium subterraneum) seedling emergence was significantly affected by moisture, soil type, temperature and cultivar. The level of rotting of tap and lateral roots was significantly affected by nutrition, soil type, temperature and cultivar. There were significant interactions involving temperature, moisture, soil type and cultivar; cultivar resistance, high moisture, high or medium temperature, high nutrition and sand soil all contributed towards less pre‐emergence damping‐off and tap and lateral root disease and to greater clover productivity. Host resistance of subterranean clover cultivars was critical for reducing disease severity and increasing productivity, even when favourable environmental conditions for severe disease occurred. In the presence of P. clandestina, the most resistant cultivar, Seaton Park, performed best under a high temperature, high nutrition and high moisture combination, but showed lower productivity under conditions of low nutrition or lower temperature, even when moisture level was high. In contrast, less resistant cultivars Riverina and Meteora had less disease and greater productivity under low moisture conditions. Findings reflect field observations that pre‐emergence damping‐off and root disease from P. clandestina in subterranean clover is particularly severe under colder conditions and in nutritionally impoverished sandy soils, and demonstrate how variations in soil type, nutrition, moisture, temperature and cultivar have profound effects on the expression and severity of phytophthora pre‐emergence damping‐off and root disease and the productivity of subterranean clover forages.  相似文献   

2.
In order to critically test the hypothesis that virulence variation in the Ascochyta rabiei/chickpea pathosystem is a discrete character under simple genetic control, a genetic cross was made between a highly virulent isolate of A. rabiei from Syria and a less virulent isolate from the USA. Two independent virulence assays conducted by inoculating susceptible and resistant chickpea cultivars under controlled conditions with 77 independent progeny isolates from this cross revealed a continuous distribution of disease phenotypes. Bimodality, as would be predicted for the segregation of virulence under simple genetic control, was not supported by statistical tests of the progeny phenotype distribution. anova revealed highly significant pathogen‐genotype × host‐genotype interactions demonstrating the segregation of genes controlling specialization on the two cultivars tested. These interactions could be localized to two isolates that changed virulence rank on the cultivars. It was concluded that variation in virulence to these two cultivars is under quantitative genetic control. If this conclusion applies to other cultivars, it can be speculated that the discrete categories of virulence variation identified in previous studies were probably the result of incomplete sampling of host resistance or pathogen virulence variation and/or of selection for increased virulence in contemporary A. rabiei populations.  相似文献   

3.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

4.
Understanding pathogenic variation in plant pathogen populations is key for the development and use of host resistance for managing verticillium wilt diseases. A highly virulent defoliating (D) pathotype in Verticillium dahliae has previously been shown to occur only in one clonal lineage (lineage 1A). By contrast, no clear association has yet been shown for race 1 with clonal lineages. Race 1 carries the effector gene Ave1 and is avirulent on hosts that carry resistance gene Ve1 or its homologues. The hypothesis tested was that race 1 arose once in a single clonal lineage, which might be expected if V. dahliae acquired Ave1 by horizontal gene transfer from plants, as hypothesized previously. In a diverse sample of 195 V. dahliae isolates from nine clonal lineages, all race 1 isolates were present only in lineage 2A. Conversely, all lineage 2A isolates displayed the race 1 phenotype. Moreover, 900‐bp nucleotide sequences from Ave1 were identical among 27 lineage 2A isolates and identical to sequences from other V. dahliae race 1 isolates in GenBank. The finding of race 1 in a single clonal lineage, with identical Ave1 sequences, is consistent with the hypothesis that race 1 arose once in V. dahliae. Molecular markers and virulence assays also confirmed the well‐established finding that the D pathotype is found only in lineage 1A. Pathogenicity assays indicated that cotton and olive isolates of the D pathotype (lineage 1A) were highly virulent on cotton and olive, but had low virulence on tomato.  相似文献   

5.
Sclerotinia stem rot (SSR) of oilseed rape (OSR, Brassica napus), caused by Sclerotinia sclerotiorum, is a serious problem in the UK and worldwide. As fungicide‐based control approaches are not always reliable, identifying host resistance is a desirable and sustainable approach to disease management. This research initially examined the aggressiveness of 18 Sclerotinia isolates (17 S. sclerotiorum, one S. subarctica) on cultivated representatives of B. rapa, B. oleracea and B. napus using a young plant test. Significant differences were observed between isolates and susceptibility of the brassica crop types, with B. rapa being the most susceptible. Sclerotinia sclerotiorum isolates from crop hosts were more aggressive than those from wild buttercup (Ranunculus acris). Sclerotinia sclerotiorum isolates P7 (pea) and DG4 (buttercup), identified as ‘aggressive’ and ‘weakly aggressive’, respectively, were used to screen 96 B. napus lines for SSR resistance in a young plant test. A subset of 20 lines was further evaluated using the same test and also in a stem inoculation test on flowering plants. A high level of SSR resistance was observed for five lines and, although there was some variability between tests, one winter OSR (line 3, Czech Republic) and one rape kale (line 83, UK) demonstrated consistent resistance. Additionally, one swede (line 69, Norway) showed an outstanding level of resistance in the stem test. Resistant lines also had fewer sclerotia forming in stems. New pre‐breeding material for the production of SSR resistant OSR cultivars relevant to conditions in the UK and Europe has therefore been identified.  相似文献   

6.
Plant–fungal specificity between cucurbitaceous crops and Diaporthe sclerotioides, the causal agent of black root rot, was studied using cucumbers (Cucumis sativa), melons (Cucumis melo), pumpkins (Cucurbita maxima), watermelons (Citrullus lanatus) and bottlegourd (Lagenaria siceraria var. gourda). Twelve D. sclerotioides isolates from these cucurbit species were cross‐inoculated. The virulence of the isolates was evaluated as the area under the disease progress curve (AUDPC). All cucurbit species were susceptible to each isolate, but AUDPCs were significantly different among the hosts, with the order of greatest to least being melon, cucumber, watermelon, bottlegourd and finally, pumpkin. The infectiveness of isolates was assessed as the quantity of D. sclerotioides DNA detected in the hypocotyls of seedlings 2 weeks after inoculation using a real‐time PCR protocol. The fungal DNA quantities varied among the species in the same order as the AUDPCs. Whilst there were statistically significant correlations between the virulence and infectiveness of D. sclerotioides isolates in cucumbers, melons and bottlegourds, their coefficients of determination were not high (r2 < 0·6). Orthogonal contrasts indicated no specificity in either the fungal virulence or infectiveness between D. sclerotioides isolates and the cucurbit hosts from which these isolates originated. Thus, although the degree of host susceptibility to D. sclerotioides varies among cucurbit species, the absence of specificity to the host species in either virulence or infectiveness suggests the pathogen may spread via various cucurbit crops, irrespective of their original host species.  相似文献   

7.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

8.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

9.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

10.
The objective of this study was to determine whether genetically differentiated groups of Puccinia triticina are present in Europe. In total, 133 isolates of P. triticina collected from western Europe, central Europe and Turkey were tested for virulence on 20 lines of wheat with single leaf rust resistance genes, and for molecular genotypes with 23 simple sequence repeat (SSR) markers. After removal of isolates with identical virulence and SSR genotype within countries, 121 isolates were retained for further analysis. Isolates were grouped based on SSR genotypes using a Bayesian approach and a genetic distance method. Both methods optimally placed the isolates into eight European (EU) groups of P. triticina SSR genotypes. Seven of the groups had virulence characteristics of isolates collected from common hexaploid wheat, and one of the groups had virulence characteristics of isolates from tetraploid durum wheat. There was a significant correlation between the SSR genotypes and virulence phenotypes of the isolates. All EU groups had observed values of heterozygosity greater than expected and significant fixation values, which indicated the clonal reproduction of urediniospores in the overall population. Linkage disequilibria for SSR genotypes were high across the entire population and within countries. The overall values of RST and FST were lower when isolates were grouped by country, which indicated the migration of isolates within Europe. The European population of P. triticina had higher levels of genetic differentiation compared to other continental populations.  相似文献   

11.
Mycosphaerella species that cause the ‘Sigatoka disease complex’ account for significant yield losses in banana and plantain worldwide. Disease surveys were conducted in the humid forest (HF) and derived savanna (DS) agroecological zones from 2004 to 2006 to determine the distribution of the disease and variation among Mycosphaerella species in Nigeria. Disease prevalence and severity were higher in the HF than in the DS zone, but significant (P < 0·001) differences between agroecological zones were only observed for disease severity. A total of 85 isolates of M. fijiensis and 11 isolates of M. eumusae were collected during the survey and used to characterize the pathogenic structure of Mycosphaerella spp. using a putative host differential cultivar set consisting of Calcutta‐4 (resistant), Valery (intermediate) and Agbagba (highly susceptible). Area under disease progress curve (AUDPC) was higher on all cultivars when inoculated with M. eumusae than with M. fijiensis, but significant (P < 0·05) differences between the two species were only observed on Valery. Based on the rank‐sum method, 8·3% of the isolates were classified as highly aggressive and 46·9% were classified as aggressive. About 11·5% of all the isolates were classified as least aggressive, and all of these were M. fijiensis. The majority of M. eumusae isolates (seven out of 11; 64%) were classified as aggressive. A total of nine pathotype clusters were identified using cluster analysis of AUDPC. At least one M. fijiensis isolate was present in all the nine pathotype clusters, while isolates of M. eumusae were present in six of the nine clusters. Isolates in pathotype clusters III and V were the most aggressive, while those in cluster VIII were the least aggressive. Shannon’s index (H) revealed a more diverse Mycosphaerella collection in the DS zone (H = 1·81) than in the HF (H = 1·50) zone, with M. fijiensis being more diverse than M. eumusae. These results describe the current pathotype structure of Mycosphaerella in Nigeria and provide a useful resource that will facilitate screening of newly developed Musa genotypes for resistance against two important leaf spot diseases of banana and plantain.  相似文献   

12.
The fungal genus Alternaria comprises a large number of asexual taxa with diverse ecological, morphological and biological modes ranging from saprophytes to plant pathogens. Understanding the speciation processes affecting asexual fungi is important for estimating biological diversity, which in turn affects plant disease management and quarantine enforcement. This study included 106 isolates of Alternaria representing five phylogenetically defined clades in two sister sub‐generic groups: section Porri (A. dauci, A. solani and A. limicola) and section Alternaria (A. alternata/tenuissima and A. arborescens). Species in section Porri are host‐specific while species in section Alternaria have wider host ranges. For each isolate, DNA sequences of three genes (Alt a1, ATPase, Calmodulin) were used to estimate phylogenies at the population and species levels. Three multilocus haplotypes were distinguished among A. dauci isolates and only one haplotype among A. solani and A. limicola isolates, revealing low or no differentiation within each taxon and strong clonal structure for taxa in this section. In contrast, 37 multilocus haplotypes were found among A. alternata/tenuissima isolates and 21 multilocus haplotypes among A. arborescens isolates, revealing much higher genotypic diversity and multiple clonal lineages within taxa, which is not typical of asexual reproducing lineages. A species tree was inferred using a Yule Speciation model and a strict molecular clock assumption. Species boundaries were well defined within section Porri. However, species boundaries within section Alternaria were only partially resolved with no well‐defined species boundaries, possibly due to incomplete lineage sorting. Significant association with host specificity seems a driving force for speciation.  相似文献   

13.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

14.
White leaf spot (Neopseudocercosporella capsellae) can be severe and problematic worldwide across both horticultural and oilseed Brassicaceae, including susceptible rapeseed. In this study, 82 isolates from 2015 and 106 isolates from across Australia in 2016 were first assessed for their virulence against three different rapeseed (Brassica napus) cultivars. For both years there were significant (P < 0.001) differences. Also, there were significant (all P < 0.001) differences between isolates in each year, and between cultivars. For 2016 isolates, there were also significant differences (P < 0.001) between isolates across three different Australian states, and a significant interaction (P < 0.001) between isolates with cultivars. Of the three Australian states, isolates from Victoria were most virulent. Among tested cultivars, cv. Scoop was most susceptible. Subsequently, phylogenetic analysis of 114 of these same 2015 and 2016 isolates showed current isolates clustered separately from the majority of 2005 N. capsellae isolates collected from Western Australia a decade earlier, confirming significant genetic change within N. capsellae populations over the past decade. However, isolate clusters showed no association with geographical location. The results suggest that phylogenetic association among 2005 and 2015–2016 N. capsellae isolates is complementary with pathogenicity variations explained by geographically different N. capsellae pathogen populations. Neopseudocercosporella capsellae populations are evolving rapidly, challenging management through host resistance at a time of increasing incidence and severity of white leaf spot disease over the past decade. The outcome is well illustrated by cv. Scoop, previously resistant to 2005 isolates but moderately susceptible to 2015 and highly susceptible to 2016 isolates.  相似文献   

15.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

16.
Exserohilum turcicum is the causal agent of northern leaf blight, a devastating foliar disease of maize and sorghum. Specificity of Eturcicum to either maize or sorghum has been observed previously, but molecular evidence supporting host specialization is lacking. The aim of this study was to compare the genetic structure of Eturcicum isolates collected from adjacent maize and sorghum fields in Delmas and Greytown in South Africa. In addition, the mode of reproduction of this pathogen was investigated. Isolates from maize (N = 62) and sorghum (N = 64) were screened with 12 microsatellite markers as well as a multiplex mating type PCR assay. No shared haplotypes were observed between isolates from different hosts, although shared haplotypes were detected between isolates from maize from Delmas and Greytown. Population structure and principal coordinate analyses revealed genetic differentiation between Eturcicum isolates from maize and sorghum. Analysis of molecular variance indicated higher among‐population variation when comparing populations from different hosts, than comparing populations from different locations. Lack of shared haplotypes, high proportion of private alleles, greater among‐population variance between hosts than locations and significant pairwise population differentiation indicates genetic separation between isolates from maize and sorghum. The high haplotypic diversity in combination with unequal mating type ratios and significant linkage equilibrium indicates that both sexual and asexual reproduction contributes to the population genetic structure of Eturcicum in South Africa.  相似文献   

17.
Phytophthora clandestina is a causal agent of root rot disease of subterranean clover in Western Australia (W.A). As a significant number of isolates of P. clandestina from W.A. could not previously be designated using existing differentials, a comprehensive set of subterranean clover (Trifolium subterraneum) cultivars was used as differentials to delineate a broader range of races of the pathogen. One hundred and one isolates of the pathogen collected from W.A. were screened on nine subterranean clover cultivars, of which seven were found to be useful as host differentials. A total of 10 races (in contrast to the five recognized previously) were defined and differentiated using octal nomenclature, presenting a clearer picture of the racial distribution of P. clandestina among W.A. isolates. Differences were found in the race populations between Australian states and are therefore important to the selection/breeding of cultivars for specific regions of Australia to counter the predominant race populations and for enforcing quarantine measures in relation to seed movements within and outside Australia. The octal nomenclature used provides a sound basis for follow-up studies and future race designations. Races 173 and 177 in this study were widely distributed and were the most common races in W.A., and together constitute 80% of the isolates characterized. While six of the seven host differentials were resistant to isolates belonging to race 001 and all were resistant to 000, it is of concern that only one differential was resistant to 157 and 173 and that none of the host differentials were resistant to 177. Our approach to P. clandestina race delineation is clearly conservative and is different from previous studies. The octal nomenclature we applied in this study is not only scientifically sound but also will facilitate rapid recognition and characterization of the races.  相似文献   

18.
Evaluations of plant resistance to pathogens are rarely made using isolates from wild habitats, although the heterogeneity of such habitats may generate pathogen diversity which could be a source of new virulence in cultivated habitats. The aim of this study was to investigate whether scab resistance factors, identified and characterized in apples using isolates of Venturia inaequalis from a cultivated habitat, remained effective against isolates from a wild habitat. Three V. inaequalis core collections originating from the cultivated apple Malus × domestica and from two wild species, M. sieversii and M. sylvestris, were established to maximize pathogen diversity. For each core collection, 10 isolates were inoculated in mixtures onto 51 genotypes from an apple progeny segregating for two qualitative resistance genes and six quantitative resistance loci (QRL). On each apple genotype, isolates that contributed to the scab symptoms were identified within the mixture using microsatellite markers. The most frequently detected isolates were inoculated singly to compare their aggressiveness according to their host origin. The results showed that isolates from a wild habitat were able to infect the susceptible apple genotypes. However, these isolates were never more aggressive than isolates from the cultivated habitat on the resistance factors tested. It can therefore be concluded that the resistance factors used in this study, identified with V. inaequalis isolates from a cultivated habitat, remained effective against isolates from M. sylvestris and M. sieversii.  相似文献   

19.
Fusarium oxysporum isolates collected from onions in the UK and other countries were characterized using sequences of the transfer elongation factor 1‐α (TEF) gene and compared with published sequence data for 10 other isolates. Isolates associated with diseased onion bulbs in the UK formed two clades. Isolates from both clades were selected for pathogenicity testing and to develop a rapid seedling assay to screen commercial onion cultivars for resistance to F. oxysporum f. sp. cepae (FOC), the cause of basal rot. Differences in the levels of aggressiveness between isolates were observed and isolates from both clades were pathogenic. Differences in resistance/susceptibility were also observed amongst 10 commercial onion cultivars, with cvs Ailsa Craig Prizewinner and White Lisbon showing the highest levels of resistance. The results from the seedling assay were supported by those from a subsequent onion bulb rot assay. Thus, this study reports the development of a rapid, simple and repeatable seedling assay that can be used to screen large numbers of onion cultivars for resistance to FOC and which is indicative of resistance at the bulb stage.  相似文献   

20.
In this study, an isolate of Magnaporthe oryzae expressing the green fluorescent protein gene (gfp) was used to monitor early events in the interaction of M. oryzae with resistant rice cultivars harbouring a blast resistance (R) gene. In the resistant cultivars Saber and TeQing (Pib gene), M. oryzae spores germinated normally on the leaf surface but produced morphologically abnormal germ tubes. Germling growth and development were markedly and adversely affected in leaves of these resistant cultivars. Penetration of host cells was never seen, supporting the idea that disruption of germling development on the leaf surface might be one of the resistance mechanisms associated with Pib function. Thus, this particular R gene appeared to function in the absence of host penetration by the fungal pathogen. Confocal laser scanning microscopy of Moryzae‐infected susceptible rice cultivars showed the dimorphic growth pattern that is typically observed during the biotrophic and necrotrophic stages of leaf colonization in susceptible cultivars. The suitability of the gfp‐expressing M. oryzae isolate for further research on R‐gene function and identification of resistant genotypes in rice germplasm collections is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号