首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late blight remained a significant disease for potato growers in Europe long after the famine of the 1840s. Of the four mitochondrial haplotypes of Phytophthora infestans, only the Ia mitochondrial DNA (mtDNA) haplotype has been identified previously in infected potato leaves from famine‐era herbarium specimens collected in England, Ireland and Europe in the 19th century. Long‐term soil fertility experiments were conducted on potato between 1876 and 1901 in Rothamsted to investigate effects of combinations of organic manures and mineral fertilizers on disease and yield. This report identifies for the first time the same Ia mtDNA haplotype of P. infestans in three diseased tubers from 1877 from the long‐term Rothamsted trials, thus providing the earliest evidence of the presence of the founder Ia mtDNA haplotype of P. infestans in potato tubers in England. Soil amendments had a significant impact on disease and yield. A real‐time PCR assay was used to detect and quantify P. infestans in tubers. The level of pathogen DNA was greatest in tubers from highest yielding plots that received combinations of inorganic nitrogenous and mineral fertilizers and least in tubers from plots with organic farmyard manures or non‐nitrogenous mineral fertilizers. The Ia mtDNA haplotype was also confirmed from diseased potato leaves during the same time period. Thus, the founder Ia mtDNA haplotype survived in potato tubers after 1846 and was present over 30 years later in the UK.  相似文献   

2.
Insight into pathogen population dynamics provides a key input for effective disease management of the potato late blight pathogen Phytophthora infestans. Phytophthora infestans populations vary from genetically complex to more simple with a few clonal lineages. The presence or absence of certain strains of P. infestans may impact the efficacy of fungicides or host resistance. Current evidence indicates that genetically, the Irish populations of P. infestans are relatively simple with a few clonal lineages. In this study, P. infestans populations were genetically characterized based on samples collected at the national centre for potato breeding during the period 2012–16. The dominance of clonal lineages within this P. infestans population was confirmed and the potential selection pressure of fungicide treatment (2013–15) and host resistance (2016) on this clonal P. infestans population was then investigated. It was found that fungicide products did not notably affect the genetic structure of sampled populations relative to samples from untreated control plants. In contrast, samples taken from several resistant potato genotypes were found to be more often of the EU_13_A2 lineage than those taken from control King Edward plants or potato genotypes with low resistance ratings. Resistant potato varieties Sarpo Mira and Bionica, containing characterized R genes, were found to strongly select for EU_13_A2 strains.  相似文献   

3.
Late blight caused by Phytophthora infestans is one of the most devastating diseases of the potato crop. Resistance breeding and current fungicides are unable to control the rapidly evolving P. infestans and new control strategies are urgently needed. This study examined mechanisms of dl ‐β‐aminobutyric acid (BABA)‐induced resistance (IR) in the potato–P. infestans system. Leaves from two cultivars that differ in their degree of resistance, Bintje and Ovatio, were analysed after foliar treatment with BABA. Rapid activation of various defence responses and a significant reduction in P. infestans growth were observed in leaves treated with BABA. In the more resistant cultivar, Ovatio, the activation was both faster and stronger than in Bintje. Microscopic analysis of leaves treated with BABA revealed induction of small hypersensitive response (HR)‐like lesions surrounded by callose, as well as production of hydrogen peroxide (H2O2). Molecular and chemical analyses revealed soluble phenols such as arbutin and chlorogenic acid and activation of PR‐1. These results show a direct activation of defence responses in potato, rather than priming as reported for other plant species. They also show that the efficiency of BABA‐IR differs between cultivars, which highlights the importance of taking all aspects into consideration when establishing new methods for disease management.  相似文献   

4.
Late blight caused by Phytophthora infestans is the most devastating disease of potato worldwide. To understand the P. infestans population structure and dynamics in northwestern China, 959 single‐lesion isolates were purified in three consecutive years (2009–2011) and were characterized for mating type, pathotype, mtDNA haplotype and molecular variation at eight SSR loci. The results showed that the distribution of mating types changed significantly over years, with self‐fertile isolates dominant in 2010 and 2011. SSR genotyping distinguished 959 isolates into 151 genotypes, and association analysis indicated that P. infestans populations in 2010 and 2011 were strictly asexual while in 2009 they showed signs of sexual reproduction. Population analysis showed that the majority of genetic variation was within P. infestans populations. Isolates sharing identical SSR genotypes were detected in distant regions, indicating that migration of P. infestans could have occurred between regions. Pathogenicity assays on a set of potato differential lines containing R1 to R11 resistance genes detected four pathotypes from 74 selected isolates, with the pathotype virulent against all 11 R genes being dominant. Three mtDNA haplotypes (Ia, IIa, IIb) were detected with Ia being dominant among 507 isolates examined. Phylogenetic analysis indicated that P. infestans populations in northwestern China are distant from European lineages including 13‐A2 (blue‐13) at the time of this survey. The results have implications for the trade of healthy seed tubers as a means of managing late blight.  相似文献   

5.
Late blight, caused by Phytophthora infestans, has emerged as the most destructive disease of potato and tomato in South India since 2008. One hundred and fifty‐seven isolates of Phytophthora infestans, 63 from potato and 94 from tomato, were collected from major potato and tomato production areas of South India between 2010 and 2012. Their phenotypic and genotypic characteristics were determined and compared with reference isolates. Isolates were characterized based on mating type, in vitro metalaxyl sensitivity, mitochondrial DNA haplotype, RG57 DNA fingerprinting patterns, SSR markers and aggressiveness on potato and tomato, in order to monitor population changes in P. infestans. All isolates were A2 mating type, metalaxyl resistant, mtDNA haplotype Ia and had RG57 and SSR fingerprints almost identical to the 13_A2 clonal lineage reported in Europe. Variation at the D13 and SSR4 loci allowed discrimination of minor variants, designated as 13_A2_3, 13_A2_3b, 13_A2_3c and 13_A2_1. A comparison of the lesion diameters caused by 157 isolates on detached leaflets of three potato and tomato cultivars showed all isolates to be equally aggressive, confirming that the same clonal population is infecting both hosts. This study demonstrates that the 13_A2 lineage was responsible for severe late blight outbreaks on potato and tomato in South India and has replaced the prior population represented by the US‐1 and other genotypes. Revised management strategies will be required to combat this destructive 13_A2 clonal lineage and monitoring of the population across other potato‐ and tomato‐growing regions of India is warranted.  相似文献   

6.
7.
Phytophthora infestans is the causal agent of potato late blight. This pathogen is usually controlled by fungicides, but new European regulations have imposed changes in crop protection management that have led to a search for alternative control measures. The induction of plant defence responses by elicitors is a promising new strategy compatible with sustainable agriculture. This study investigated the effect of eliciting a defence response in potato against P. infestans using a formulation of the COS‐OGA elicitor that combines cationic chitosan oligomers (COS) and anionic pectin oligomers (OGA). Trials were conducted under greenhouse conditions to assess the ability of COS‐OGA to control P. infestans. The results showed that three foliar applications with this elicitor significantly increased potato protection against late blight in controlled conditions. The activation of potato defence genes was also evaluated by RT‐qPCR during these trials. Two pathogenesis‐related proteins, basic PR‐1 and acidic PR‐2, were rapidly and significantly up‐regulated by the elicitor treatment. Therefore, these results suggest that the COS‐OGA elicitor increases the protection of potato against P. infestans and that this protection could be explained by an increase in the expression of potato defence genes rather than by biocide activity.  相似文献   

8.
The population of Phytophthora infestans on potato landraces in three provinces (Carchi, Chimborazo and Loja) of Ecuador was analysed. All isolates (= 66) were of the A1 mating type. Simple sequence repeats (SSR) were used to assess the genetic diversity of the isolates. The P. infestans isolates from the potato landraces grouped in a single clade together with reference isolates belonging to the clonal lineage EC‐1. In the 66 SSR profiles obtained, 31 multilocus genotypes were identified. The 66 isolates constituted 49 different races according to the Solanum demissum differential set ( R1 to R11). The P. infestans population was complex and virulent on 4 to 11 R genes. Analysis showed that the subclonal variation in the Ecuadorian EC‐1 clone is increasing over time and is much larger than clonal variation in lineages in the Netherlands and Nicaragua, suggesting high mutation rates and little or no selection in Ecuador.  相似文献   

9.
Control of the potato late blight pathogen Phytophthora infestans relies heavily on chemicals. The fungicide metalaxyl‐M (Mefenoxam) has played an important role in controlling the disease, but insensitivity to the fungicide in certain isolates is now of major concern. A genetic basis for resistance to metalaxyl suggests the possibility for linking resistance phenotypes to specific population genetic markers, but in order to do this, the population genetic structure and mode of reproduction in a population must first be well described. The dynamics of metalaxyl‐M resistance in the Danish population of P. infestans was characterized over the course of the 2013 growing season, as was the population genetic structure, using simple sequence repeat (SSR) genotypes and single nucleotide polymorphism (SNP)‐based mitochondrial haplotyping of over 80 isolates. Both mating types A1 and A2 were present in most fields, but tests for recombination showed that clonal reproduction dominates in Danish populations. Genotype was not linked to haplotype and no differentiation was observed at the haplotype level, but rather between fields. Resistance phenotypes were linked to specific SSR alleles, demonstrating the potential for a more precise SNP‐based marker system for predicting resistance to metalaxyl‐M.  相似文献   

10.
11.
Limited knowledge is available on Phytophthora infestans populations in Sub‐Saharan Africa (SSA). Therefore, and in response to recent severe late blight epidemics, P. infestans isolates from potato, tomato and Petunia × hybrida from eight SSA countries were characterized. Isolates were characterized with ‘old’ markers, including mating type (176 isolates), mitochondrial DNA haplotype (mtDNA) (281 isolates), glucose‐6‐phosphate isomerase (Gpi) (70 isolates), restriction fragment length polymorphism analysis with probe RG‐57 (49 isolates), and by metalaxyl sensitivity (64 isolates). Most isolates belonged to the US‐1 genotype or its variants (US‐1.10 and US‐1.11). The exceptions were genotype KE‐1 isolates (A1 mating type, mtDNA haplotype Ia, Gpi 90/100 and unique RG‐57 genotype), identified in two fields in Kenya, which are related to genotypes previously identified in Rwanda (RW‐1 and RW‐2), Ecuador and Europe. Metalaxyl‐resistant P. infestans isolates from potato were present in all the countries except Malawi, whereas all the isolates from tomato were sensitive. Genotyping of 176 isolates with seven simple sequence repeat (SSR) markers, including locus D13 that was difficult to score, revealed 79 multilocus genotypes (MLGs) in SSA. When this locus was excluded, 35 MLGs were identified. Genetic differentiation estimates between regional populations from SAA were significant when locus D13 was either excluded (P = 0·05) or included (P = 0·007), but population differentiation was only low to moderate (FST = 0·044 and 0·053, respectively).  相似文献   

12.
Y. Tian  J. Sun  H. Li  G. Wang  Y. Ma  D. Liu  J. Quan  W. Shan 《Plant pathology》2015,64(1):200-206
Late blight caused by Phytophthora infestans is the most serious disease of potato worldwide. To understand the P. infestans population structure in northern Shaanxi, an emerging potato production region in China, 125 single‐lesion isolates were randomly collected from farmers' fields in 2009 and characterized phenotypically and genotypically. A mating type assay showed that 94 isolates were A1 mating type. Virulence determination of selected isolates on a set of differential potato lines containing R1 to R11, respectively, showed the presence of two pathotypes, of which the pathotype lacking avirulence genes Avr3, Avr4 and Avr10 was dominant. Isolates lacking all avirulence factors Avr1 to Avr11 were detected but at lower frequency (13·6%). Analysis for mtDNA haplotype showed all 61 examined isolates were IIa. A total of seven multilocus genotypes were distinguished among 125 isolates, as determined with seven polymorphic microsatellite markers. The genotype SG‐1 was dominant in the population with a frequency of 75·2% and was present throughout the region. Analysis of the phenotypic and genotypic structures of P. infestans populations indicated strict clonal reproduction of the pathogen and suggested that sexual reproduction probably does not occur. Potential implications for disease management are discussed.  相似文献   

13.
14.
Integrating cultivars that are partially resistant with reduced fungicide doses offers growers an opportunity to decrease fungicide input but still maintain disease control. To use integrated control strategies in practice requires a method to determine the combined effectiveness of particular cultivar and fungicide dose combinations. Simple models, such as additive dose models (ADM) and multiplicative survival models (MSM), have been used previously to determine the joint action of two or more pesticides. This study tests whether a model based on multiplicative survival principles can predict the joint action of fungicide doses combined with cultivars of differing partial host resistance. Data from eight field experiments on potato late blight (Phytophthora infestans) were used to test the model; the severity of foliar blight was assessed and scores used to calculate the area under the disease progress curve (AUDPC). A subset of data, derived from the most susceptible cultivar, King Edward, was used to produce dose–response curves from which parameter values were estimated, quantifying fungicide efficacy. These values, along with the untreated values for the more resistant cultivars, Cara and Sarpo Mira, were used to predict the combined efficacy of the remaining cultivar by fungicide dose combinations. Predicted efficacy was compared against observations from an independent subset of treatments from the field experiments. The analysis demonstrated that multiplicative survival principles can be applied to describe the joint efficacy of host resistance and fungicide dose combinations.  相似文献   

15.
16.
Differential interactions in tuber blight attack between potato cultivars and Phytophthora infestans isolates were studied using whole tuber and tuber slice assays. Tuber blight incidence and severity were studied in a whole tuber assay, whilst necrosis and mycelium coverage were evaluated in a tuber slice assay. The overall defence reaction of the potato cultivars tested varied considerably. Cultivars like Kartel and Producent showed resistant reactions, whilst Bintje and, to a lesser extent, Astarte reacted more susceptibly after inoculation with aggressive strains of P. infestans . A highly significant cultivar by year interaction was observed when tuber blight incidence was evaluated in two successive years. Differential responses were revealed by changing ranked order of cultivars after exposure to aggressive isolates of P. infestans . The results show that cultivar by isolate interactions existed for all components of tuber blight resistance studied. The quantitative nature of the observed resistance responses suggests the presence of quantitative trait loci governing resistance to tuber blight. The consequences of differential interactions in relation to the stability of tuber resistance are discussed.  相似文献   

17.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

18.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

19.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

20.
The aggressiveness of 20 Northern Ireland single-lesion isolates of Phytophthora infestans was compared following their inoculation onto detached leaflets of three potato cultivars chosen on the basis of their differing levels of race-nonspecific resistance to late blight: Bintje (highly susceptible); Cara (moderately resistant); and Stirling (more resistant). Five isolates from outside Northern Ireland were included for comparative purposes: two from the Republic of Ireland; two from the USA (representing the US-1 and US-8 clonal lineages); and one from Mexico. To control the variation between tests, a balanced incomplete block design was used, as opposed to either a complete block design or the method of inclusion of standard isolates, where such variation would have increased the error. Highly significant variation for disease parameters, including latent period, infection frequency, area under the lesion expansion curve (AULEC) and sporulation capacity, was found between isolates. These differences were much more marked on the cultivars exhibiting higher levels of race-nonspecific resistance. There was a significant interaction between isolate and cultivar for all parameters assessed and, overall, no one isolate was the most aggressive across all three potato cultivars. However, a group comprising seven of the 20 Northern Ireland isolates was consistently found to exhibit the highest levels of aggression towards all three cultivars for each of the disease parameters. These results demonstrate that significant variation for foliar aggressiveness exists within the Northern Ireland population of P. infestans , and indicate the importance of selecting appropriately aggressive isolates for evaluation of host resistance to late blight within breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号