首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the previous report of this ongoing study, results of an extensive field survey were collated and a theoretical model was proposed to predict the mechanical behavior of timber shear walls of traditional design in Taiwan. The initial objective of the present report was to propose a simplified calculation method for estimating the initial stiffness and yield strength of traditional timber shear walls. Based on the results of the field survey, a total of 15 full-scale specimens were tested to verify the theoretical model and simplified calculation proposed previously. Good agreement was found from comparison of analytical and experimental results. The results of this study show that the friction behavior between board units and beams plays the major role in resisting the lateral force applied on the timber shear wall, followed by the resistance supplied by embedment. The resistance provided by bamboo nails is minor due to the small section. Another trend found was that for set dimensions of a timber shear wall, the board width can be increased to obtain higher stiffness and strength of the shear wall.  相似文献   

2.
The objectives of this study were to explore the mechanical behavior of traditional timber shear walls in Taiwan and to propose a theoretical model to predict their lateral force resistance. An extensive field investigation was conducted, and the dimensions, tectonic detail, and materials used were recorded. The data collected were used as the reference for theoretical derivation and experimental design. In the theoretical model, the moment resistance of entire shear walls was derived from the contributions of the moment-resisting capacity supplied not only by embedment and friction action between board units and beams but also the dowel action of bamboo nails. Timber shear walls with various geometric conditions and material properties are considered. The theoretical model demonstrated in this study can be used to predict the mechanical behavior of timber shear walls and will be verified by experiments in our next article.  相似文献   

3.
In this study, an experimental study was conducted on the nailed timber–plywood–timber joints extended from the standard wall–floor joints of wooden light frame constructions, where the bottom plates of shear walls are nailed to the floors consisting of joists and floor sheathings nailed to them. The principal conclusions are as follows: The allowable lateral resistance of the nailed timber–plywood–timber joints can roundly be estimated by neglecting the plywood panels if their densities are higher than those of the timber main-members and they are fastened effectively onto the timber main-members. The stiffness of the timber–plywood–timber joints is less than that of the control timber–timber joints, which is improved by increasing the number of nails used to fasten the plywood panels onto the timber main-members. The stiffness of the joints whose floor sheathings are glued onto the joists is equivalent to the control timber–timber joints. The timber–plywood–timber joints with appropriate specifications have greater energy capacity until the failure than that of the control timber–timber joints. This ensures their energy capacity, which is important in dynamic resistance, to be equivalent to the control timber–timber joints.  相似文献   

4.
A cross-laminated timber (CLT) wall plays the role of resisting shear stress induced by lateral forces as well as vertical load. Due to the press size, CLT panels have a limitation in size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel connections and wanted to know whether the shear wall would have equivalent shear performance with the wall made of a single CLT panel. In this study, this was investigated by experiments and kinematic model analysis. Two shear walls made of small CLT panels were tested. The model showed a good agreement with test results in the envelope curve. Even though the shear walls were made of small panels, the global peak load did not decrease significantly compared with the wall made of a single CLT panel, but the global displacement showed a large increase. From this analysis, it was concluded that the shear wall can be designed with small CLT panels, but displacement should be designed carefully.  相似文献   

5.
介绍了大型通用有限元软件ANSYS的特点和进行有限元分析的一般步骤。通过在木桁架、木结构剪力墙和木结构楼板3种结构中应用得知,ANSYS可以用于对木结构构件的建模和应力分析以及进行相应的力学性能预测,且研究精度高、速度快,可节约大量的产品试制和试验经费,同时还可以实现对结构的优化。  相似文献   

6.
Pseudodynamic (PSD) tests were conducted on plywood-sheathed conventional Japanese three-dimensional (3D) wooden structures. Lateral load was applied to the edge beam of specimen structures to generate eccentricity loading. Specimens were based on a combination of shear walls with openings in the loading direction and horizontal diaphragms with different shear stiffness. The principle deformation of the horizontal diaphragm was torsion for rigid diaphragms and shear deformation for flexible diaphragms. Lumped-mass time-history earthquake response analysis was conducted on the tested structures, and additional calculations were conducted on structures with different eccentricity rates. Dynamic analyses were conducted by varying the masses and the resistance of the walls in the loading direction. The simulated peak displacement response in the loading plane agreed comparatively well with the PSD test results. The maximum displacement response on changing the wall resistant ratio showed almost the same tendency as that obtained by changing the mass ratio up to an eccentricity rate of 0.3; however, the maximum displacement response increased markedly beyond an eccentricity rate of 0.4. It was proved that the lumped-mass 3D model proposed in this study was appropriate for conducting a parameter study on the 3D dynamic behavior of timber structures.  相似文献   

7.
Pseudodynamic (PSD) lateral loading tests were conducted on conventional post and beam timber frames with plywood-sheathed shear walls to validate the dynamic model of wall panels, each with an opening of a different configuration. The lateral forces were applied step by step at the top of the wooden frames by the computer-controlled actuator, and the displacement response for the next step was computed on the basis of the input accelerogram of the 1940 El Centro earthquake scaled up to 0.4g. The test results were compared with those of the lumped mass time-history earthquake response analysis using the hysteresis model with pinching. The results of the dynamic analysis with this global model consisting of the envelope curves, unloading and reloading with pinching agreed well with the experimental results of the PSD tests of this type of earthquake record. Some parametric studies may be necessary, however, to validate the model with different earthquake records. The hysteretical parameters obtained in this study showed similar values for each of the wall panels with different opening configurations. This makes it possible to use the model and parameters for the plywood-sheathed shear walls to estimate the dynamic behavior of entire structures without conducting expensive PSD tests or shaking table tests.  相似文献   

8.
Different test setups for determining perpendicular to grain embedment strength of timber have been reported in literature. In addition, different definitions of strength have been used associated with the deformation level underneath the fastener. It is shown that all reported experimental results can be related, which enables comparison on a common basis. Furthermore, several models for embedment strength perpendicular to the grain which primarily depend on timber density (specific gravity) and fastener diameter are evaluated. It is shown that the model currently prescribed by the European structural timber design code [Comité Européen de Normalisation (CEN) EN 1995-1-1: 2004: Eurocode 5—design of timber structures. Part 1.1: general rules and rules for buildings. CEN, Brussels, 2004] is unable to accurately predict the strength and an alternative is proposed. This may result in more reliable timber connections in applying the European Yield Model to determine the connection strength.  相似文献   

9.
In past years high priority was given to developing a seismic design for wood structures, including research on the response of wood structures to earthquakes. In this study a new type of portal frame with relatively large span was developed for the traditional Japanese wooden houses with large openings at the front to strengthen the structure. Stainless steel plates coated with zinc and glued with epoxy adhesives on laminated veneer lumber (LVL) members, composed of Douglas fir veneer and bonded with phenolformaldehyde resin, were used. The connection between the frame's beam and columns and between the columns and groundsills was mechanical, with bolts. The subject of this research was to analyze strength properties and failure behavior of glued LVL metal joints used as structural components and to evaluate the response of LVL portal frames under cyclic lateral loading. The results show that portal frames using glued LVL metal plates have a good multiplier for the shear walls and may be applied to traditional Japanese structures. The equivalent viscous damping provided good energy dissipation in the frames. The joints displayed good mechanical behavior during tests; moreover, the structures demonstrated high strength, stiffness, and ductility, which are necessary for a seismic design.Part of this paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kouchi, April 1997; and at the 5th world conference on timber engineering. Montreux, Switzerland, August 1998  相似文献   

10.

Context

The commercial feasibility of sawmilling depends on the expected volume and value of sawn planks. Models that predict the volume of sawn timber of a particular quality and produced from logs of known characteristics are therefore very useful.

Aims

The objectives were to study variation in sawing yield and to obtain models that predict lumber volume and grade recovery on the basis of easy-to-measure predictor variables of saw logs.

Methods

Forty-six oak trees growing in Galicia (NW Spain) were felled and cut into logs. The logs were visually graded and sawn mainly into quartersawn planks, which were dried, planed and visually graded for structural purposes.

Results

The total volumetric sawing yield was 47.6 %. The sawing yield for planks of structural dimensions (cross-section, 70?×?120 or 70?×?170 mm) was 43.4 %, but decreased to 8.4 % for structural sized and quality grade beams because of wane and biotic damage in many pieces. Log grade did not significantly affect sawing yield in the sample analysed, despite the wide range of diameter over bark at the smallest end in the sampled logs (22–77 cm). The sawing pattern affected total sawing yield (F?=?4.913; p value?=?0.001) and the sawing yield for structural planks (F?=?6.142; p value?=?0.0002); radial sawing with one cut and live sawing of half logs provided the highest yields. Three models were proposed for estimating sawn volume in timber products, with the small-end log diameter over bark as the predictor variable and R adj 2 between 0.31 and 0.78 (p value?<?0.01).

Conclusion

For the purpose of producing oak timber destined for structural use, the presence of bark and sapwood in planks must be reduced in the sawing process; this would decrease the total lumber recovery but increase the timber value yield. Air drying must be accelerated to reduce biotic damage in sawn planks. Geometric mean diameter over bark at the smallest end (d) outperforms other measures as a predictor variable for total or structural sawn timber volume.  相似文献   

11.
In this study, we developed a new analysis method that enables numerical simulations of the collapse process of real-size wooden houses and evaluated the accuracy thereof by carrying out numerical simulations by shaking table tests. The distinct element method was adopted as the basic theory of our numerical analysis. This research is the first approach in which the extended distinct element method was used for Japanese timber post-and-beam construction. The size of the analysis model is a 5.5 m × 5.5 m, two-story real-size wooden house. The three analytical models were developed in terms of the strength of exterior mortar walls. The simulation results were compared with the shaking table test results. One of the collapsing processes of the numerical simulation corresponds well to the experiment results. Assessment of the possibility of collapse for real-size wooden houses was determined to be possible using our newly developed numerical analysis method.  相似文献   

12.
The beams and columns in Chinese ancient wooden buildings were connected with mortise–tenon joints, which are semi-rigid due to the friction and squeezing deformation between mortise and tenon. In this paper, a friction constitutive model for the friction behavior between mortise and tenon was proposed based on the modern frictional theory. A series of surface topography and hardness tests were conducted to obtain some parameters used in the friction constitutive model. A finite element (FE) model of a Chinese ancient wooden frame with mortise–tenon joints under reversed cyclic loading was performed based on the proposed friction constitutive model, and a FE model using a constant friction coefficient was also carried out. Experimental results were used to validate the results modeled by the two models, and better agreement of the proposed model was observed.  相似文献   

13.
文章根据檀木利用的传统历史,结合当代世界植物分类系统,系统地将檀木分为三大类:黄檀木、紫檀木和檀香木,并介绍了各类檀木的材性、利用、构造特征及识别,以期为识别真假檀木提供一个基本的参考依据。  相似文献   

14.
We used a two-dimensional finite element method to analyze the load-slip characteristics of nailed wooden joints sheathed with a panel. We used tests of nail bending, nail shank embedment in a wood or a panel, nail-head embedment in a face of a panel, nail withdrawing from a wood, friction between a wood and a panel, and initial axial forces of the nails. The values of the material properties for the analytical models were determined with the above tests. With a conventional one-dimensional analysis it is impossible to evaluate the shearing performance accurately because the axial forces of the nail are not calculated. Therefore, we used two-dimensional geometric nonlinear analysis. The computed load-slip curves closely matched the original experimental results; and when the friction and initial axial forces were considered, the computed curves were more likely to match the original experimental results. Our results suggested that it is better to use geometric nonlinear analysis to analyze the shearing characteristics of nailed joints, and that friction and axial forces are important factors for accurate analysis.Parts of this report were presented at the 7th World Conference on Timber Engineering, Malaysia, August 2002  相似文献   

15.
Abstract

Most of the cracks are caused by changes in temperature and relative humidity which lead to shrinkage and swelling of the wood and thereby induce stresses in the structure. How these cracks influence the strength of the wooden structure, especially the shear strength, is not well understood. However, it is reasonable to expect that cracks have an impact on the shear strength as they preferably run along the beams in the direction of grain and bond lines. The purpose of this study was to investigate the load-bearing capacity of cracked glulam beams and to find a model that could predict the failure load of the beams due to the cracks. Three-point bending tests were used on glulam beams of different sizes with pre-manufactured cracks. An orthotropic elastic model and extended finite element method was used to model the behaviour of the cracked beams and to estimate the load-bearing capacity. The conclusions were validated by numerical simulations of the mechanical behaviour of three-point bending of glulam beams with different crack locations. The crack initiation load was recorded as the failure load and compared to the experimental failure load. The results of the compaction simulations agree well with the experimental results.  相似文献   

16.
A newly developed full-scale shear block specimen was used to simultaneously determine the shear strength and shear modulus of glued-laminated timber. The shear modulus was calculated using the shear strain distribution measured by means of digital image correlation. To obtain the exact relationship between shear modulus and shear strength, the shear strain in the intended shear plane was measured. A relatively high correlation coefficient of 0.75 was found between the shear modulus and nominal shear strength in two types of glued-laminated timber tested: sugi (Cryptomeria japonica) and Douglas-fir (Pseudotsuga menziesii). Good correlation was also found between the density of middle lamina and shear strength. However, the relationships to density showed species dependence, which was not observed in the relationship between shear modulus and shear strength.  相似文献   

17.
ABSTRACT

Rule-based automatic grading (RBAG) of sawn timber is a common type of sorting system used in sawmills, which is intricate to customise for specific customers. This study further develops an automatic grading method to grade sawn timber according to a customer's resulting product quality. A sawmill's automatic sorting system used cameras to scan the 308 planks included in the study. Each plank was split at a planing mill into three boards, each planed, milled, and manually graded as desirable or not. The plank grade was correlated by multivariate partial least squares regression to aggregated variables, created from the sorting system's measurements at the sawmill. Grading models were trained and tested independently using 5-fold cross-validation to evaluate the grading accuracy of the holistic-subjective automatic grading (HSAG), and compared with a re-substitution test. Results showed that using the HSAG method at the sawmill graded on average 74% of planks correctly, while 83% of desirable planks were correctly identified. Results implied that a sawmill sorting station could grade planks according to a customer's product quality grade with similar accuracy to HSAG conforming with manual grading of standardised sorting classes, even when the customer is processing the planks further.  相似文献   

18.
正交胶合木(CLT)纵横向层板交叉组坯,纵向层板强度和模量较高,横向层板强度和模量较低,其截面呈强弱相间的条带状结构.当轴心受压构件失稳时,截面剪切变形对CLT稳定承载力的影响不可忽略,故不能采用一般木产品的稳定承载力计算方法.目前我国相关标准中尚无CLT轴心受压构件稳定承载力计算方法.鉴于此,从CLT产品的截面构成特...  相似文献   

19.
ABSTRACT

A glued-in rods' connection is generally constituted by a group of steel bars bonded by an adhesive into timber elements. In the past, most of the research focused on single-rod connections, in order to exploit the maximum resistance of the connection without accounting for interaction among bars or splitting failure in the timber member due to close edge distances or spacing between bars. Such interaction problems arise when dealing with multiple rods, thus requiring specific investigation to fully understand the behavior of the connection as a whole and to determine its capacity. In both cases, existing test procedures determine bond strength in specific geometrical configuration. The paper aims to determine the pull-out strength of single and multiple axially loaded steel rods bonded in glulam parallel to the grain differentiating the adhesive failure from the other failure modes. After an initial review of typical applications and existing design procedures, test results on single rod with confined or unconfined test setup on single rod at different embedment depths are presented and discussed, indicating that the confinement has a negligible influence on the pull-out capacity. Subsequently, interaction between bars is investigated by a specific unconfined configuration. The accounted parameters are the embedment depth of the bars, the dimensions of the timber section, and the spacing between bars. Results are discussed and compared with three-dimensional numerical simulations. Both experimental and numerical results suggest that the critical value at which the transition from pull-out to timber-related failure is observed depends on the mechanical properties of the timber and on the properties of the adhesive, such that a single value of spacing should not be provided in design standard if the full capacity of the adhesive is to be exploited.  相似文献   

20.
安徽霍山县靠近毛竹天然分布的北部边缘,其独特的地理位置及气候条件影响着毛竹材的各项特性,其中海拔是影响毛竹材力学性质的重要因子。以安徽霍山不同海拔(设120、230、370、510和600 m 5种海拔处理)的毛竹材为试验材料,研究了海拔因子对竹材力学性质的影响。结果表明:海拔因子对霍山毛竹的竹材密度有一定影响,随海拔升高,竹材的气干密度和全干密度呈增大趋势,但差异不大;海拔因子对竹材的顺纹抗压强度和顺纹抗剪强度有显著影响,但对顺纹抗拉强度影响不大。霍山毛竹材的各项力学特性接近传统的建筑用木材,经过合理加工可以替代传统木质建筑材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号