首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding soil organic carbon (SOC) responses to land-use changes requires knowledge of the sizes and mean residence times (MRT) of specific identifiable SOC pools over a range of decomposability. We examined pool sizes and kinetics of active and slow pool carbon (C) for tropical forest and grassland ecosystems on Barro Colorado Island, Panama, using long-term incubations (180 days) of soil and stable C isotopes. Chemical fractionation (acid hydrolysis) was applied to assess the magnitude of non-hydrolysable pool C (NHC). Incubation revealed that both grassland and forest soil contained a small proportion of active pool C (<1%), with MRT of ~6 days. Forest and grassland soil apparently did not differ considerably with respect to their labile pool substrate quality. The MRT of slow pool C in the upper soil layer (0–10 cm) did not differ between forest and grassland, and was approximately 15 years. In contrast, changes in vegetation cover resulted in significantly shorter MRT of slow pool C under grassland (29 years) as compared to forest (53 years) in the subsoil (30–40 cm). The faster slow pool turnover rate is probably associated with a loss of 30% total C in grassland subsoil compared to the forest. The NHC expressed as a percentage of total C varied between 54% and 64% in the surface soil and decreased with depth to ~30%. Grassland NHC had considerably longer MRTs (120 to 320 years) as compared to slow pool C. However, the functional significance of the NHC pool is not clear, indicating that this approach must be applied cautiously. An erratum to this article can be found at  相似文献   

2.
This study investigates if Araucaria forest (C3 metabolism) expansion on frequently burnt grassland (C4 metabolism) in the southern Brazilian highland is linked to the chemical composition of soil organic matter (SOM) in non‐allophanic Andosols. We used the 13C/12C isotopic signature to group heavy organo‐mineral fractions according to source vegetation and 13C NMR spectroscopy, lignin analyses (CuO oxidation) and measurement of soil colour lightness to characterize their chemical compositions. Large proportions of aromatic carbon (C) combined with small contents of lignin‐derived phenols in the heavy fractions of grassland soils and grass‐derived lower horizons of Araucaria forest soils indicate the presence of charred grass residues in SOM. The contribution of this material may have led to the unusual increase in C/N ratios with depth in burnt grassland soils and to the differentiation of C3‐ and C4‐derived SOM, because heavy fractions from unburnt Araucaria forest and shrubland soils have smaller proportions of aromatic C, smaller C/N ratios and are paler compared with those with C4 signatures. We found that lignins are not applicable as biomarkers for plant origin in these soils with small contents of strongly degraded and modified lignins as the plant‐specific lignin patterns are absent in heavy fractions. In contrast, the characteristic contents of alkyl C and O/N‐alkyl C of C3 trees or shrubs and C4 grasses are reflected in the heavy fractions. They show consistent changes of the (alkyl C)/(O/N‐alkyl C) ratio and the 13C/12C isotopic signature with soil depth, indicating their association with C4 and C3 vegetation origin. This study demonstrates that soils may preserve organic matter components from earlier vegetation and land‐use, indicating that the knowledge of past vegetation covers is necessary to interpret SOM composition.  相似文献   

3.
Carbon-13 (C-13) solid-state NMR spectroscopy was used to investigate the chemical nature of organic C in mineral topsoil sampled under grassland and adjacent recently established (10–17 years old) coniferous forest (Douglas fir, Pseudotsuga menziesii; Ponderosa pine, Pinus ponderosa; Corsican pine, Pinus nigra) at two sites (Craigieburn, Cave Stream) in the South Island of New Zealand. This involved using a Cross-Polarized/Magic-Angle Spinning (CP/MAS) technique to identify different chemical forms of soil organic C, whilst Proton Spin Relaxation Editing (PSRE) was used to determine different ‘pools’ of soil organic C. Results obtained from the Craigieburn soils (0–5 cm) were more promising than those obtained from the Cave Stream soils (0–10 cm) because the total Fe content was smaller, and indicated a shift towards more recalcitrant forms of organic C in soil under trees compared with grassland, which might reflect reduced inputs of fresh organic matter to the soil under trees.  相似文献   

4.

Background, aim, and scope  

Land-use change can significantly influence carbon (C) storage and fluxes in terrestrial ecosystems. Soil–plant systems can act as sinks or sources of atmospheric CO2 depending on formation and decomposition rates of soil organic matter. Therefore, changes in tropical soil C pools could have significant impacts on the global C cycle. This study aims to evaluate the impacts of long-term sugarcane cultivation on soil aggregation and organic matter, and to quantify temporal dynamics of soil organic matter in cultivated sugarcane plantation soils previously under a tropical natural secondary forest.  相似文献   

5.
The dependences between negative charge and pH for organic matter of limed and unlimed profiles of sandy acidic forest soils were determined on the base of ion exchange and titration curves measurements. Subtracting the titration curves of the supernatant from the titration curves of the respective suspensions the quantities of base consumed by solid phases were determined. They were interpreted in terms of negative charge after corrections with the quantities of initial exchangeable basic cations and exchangeable hydrogen. For investigated organic material the charge increased slowly in acidic pH region and much faster in alkaline pH region. The zones of the fast increase of charge occured at higher pH's for deeper horizons, enriched with fulvic acids. The observed changes of organic matter charge due to liming were related to the increase of fulvic to humic acids ratio. The negative charges of organic matter in limed and unlimed profiles estimated for high pH were better correlated with fulvic to humic acids ratio than when estimated for lower pH levels.  相似文献   

6.
《Applied soil ecology》2011,48(3):210-216
Labile soil organic matter (SOM) can sensitively respond to changes in land use and management practices, and has been suggested as an early and sensitive indicator of SOM. However, knowledge of effects of forest vegetation type on labile SOM is still scarce, particularly in subtropical regions. Soil microbial biomass C and N, water-soluble soil organic C and N, and light SOM fraction in four subtropical forests were studied in subtropical China. Forest vegetation type significantly affected labile SOM. Secondary broadleaved forest (SBF) had the highest soil microbial biomass, basal respiration and water-soluble SOM, and the pure Cunninghamia lanceolata plantation (PC) the lowest. Soil microbial biomass C and N and respiration were on average 100%, 104% and 75%, respectively higher in the SBF than in the PC. The influence of vegetation on water-soluble SOM was generally larger in the 0–10 cm soil layer than in the 10–20 cm. Cold- and hot-water-soluble organic C and N were on average 33–70% higher in the SBF than in the PC. Cold- and hot-soluble soil organic C concentrations in the coniferous-broadleaved mixed plantations were on average 38.1 and 25.0% higher than in the pure coniferous plantation, and cold- and hot-soluble soil total N were 51.4 and 14.1% higher, respectively. Therefore, introducing native broadleaved trees into pure coniferous plantations increased water-soluble SOM. The light SOM fraction (free and occluded) in the 0–10 cm soil layer, which ranged from 11.7 to 29.2 g kg−1 dry weight of soil, was strongly affected by vegetation. The light fraction soil organic C, expressed as percent of total soil organic C, ranged from 18.3% in the mixed plantations of C. lanceolata and Kalopanax septemlobus to 26.3% in the SBF. In addition, there were strong correlations among soil organic C and labile fractions, suggesting that they were in close association and partly represented similar C pools in soils. Our results indicated that hot-water-soluble method could be a suitable measure for labile SOM in subtropical forest soils.  相似文献   

7.
The composition of soil organic matter (SOM) is influenced by land use and fertilization. We studied changes in the SOM in a long-term field experiment on a sandy Podzoluvisol. The control plot and four combinations of manurial treatments of the experiment were selected: one with mineral fertilizer only and three combinations of organic manure with mineral fertilizer: cattle manure + NPK, cattle manure + PK and straw + NPK. The SOM was extracted by sodium pyrophosphate solution (pH = 10) and hot water (100°C). The extracts were analysed by Fourier-Transform Infrared (FT-IR) spectroscopy and gel permeation chromatography (GPC). The FT-IR spectra from sodium pyrophosphate extracts indicate that composition of SOM is indeed influenced by different fertilization. The C=O band at 1710 cm–1 in the samples of the plots fertilized with cattle manure has the highest absorption intensity, whereas the material from the plot fertilized with straw + NPK has the least intense. The GPC analyses of the extracts showed that adding cattle manure + NPK increased the molecular size of SOM in comparison with the control plot. The analysis of hot-water extracts with FT-IR showed no significant differences in functional groups, but GPC chromatograms distinguished features in molecular size distribution. Fertilization with cattle manure increased the molecular size of the SOM in comparison with the control, but the differences in content of carboxylic groups and molecular weight were detected in sodium pyrophosphate extracts only.  相似文献   

8.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15 cm depth (at a depth of 5 cm below surface up to –5°C) from January to April 2006, while the snow‐covered control plots never reached temperatures < 0°C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic‐C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)V and the microbial‐sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow‐removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water‐stress indicator (PLFA [cy17:0 + cy19:0] / [16:1ω7c + 18:1ω7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.  相似文献   

9.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

10.
The effects of burning a native grassland on soil organic matter status was investigated on a long-term (50 years) field experiment where different times and frequencies of burning were compared. Significant decreases in organic C were observed only in the surface 0-2 cm layer and only under annual and biennial winter burning and biennial and triennial autumn burning. Burning in spring did not significantly affect organic C content presumably because substantial amounts of litter decomposed and/or were incorporated into the soil by faunal activity prior to burning. Total N content was decreased substantially to a depth of 6 cm by all burning treatments and as a result, the C:N ratio of soil organic matter was widened. In addition, the amount of potentially mineralizable N, as measured by either aerobic incubation or plant N uptake in a pot experiment, was much reduced. Burning also induced a decrease in light fraction and hot water-extractable C in the 0-2 cm layer but an increase in these parameters, and in microbial biomass C and root density, in the 4-10 cm layer. This was attributed to burning causing a decrease in above-ground litter inputs but increased turnover of root material below the surface. Despite the decrease in organic C and total N content with increasing soil depth, potentially mineralizable N showed the opposite trend. This unexpected finding was confirmed at a nearby site under native grassland and contrasted with decreasing potentially mineralizable N with depth which was measured under a fertilized kikuyu grass dairy pasture. The wide C:N ratio of litter from native grassland, in association with the decreasing size and activity of the microbial biomass with depth results in greater N immobilization (thus less net mineralization) occurring in soil samples taken from close to the soil surface.  相似文献   

11.
The effects of organic and mineral fertilization on four soil organic matter (SOM) fractions (non-protected, physically protected, chemically protected, and biochemically protected) and microbial community composition were investigated by sampling soil of a 35-year-long fertilization experiment. The SOM fractions were investigated by combined physical and chemical approaches, while microbial community composition was determined by phospholipid fatty acid analysis (PLFA). Organic C (SOC) was primarily distributed within the microaggregate-protected particulate organic matter (iPOM) and the hydrolysable and non-hydrolysable silt-sized (H-Silt, NH-Silt) fractions, which accounted for 11.6–16.9, 23.4–28.9, and 25.4–30.6% of the total SOC content, respectively. The contributions of these “slow” fractions (iPOM, H-Silt, NH-Silt) to the increased SOC were 178–293, 118–209, and 85–109% higher after long-term sole manure or manure in combination with inorganic N fertilization compared with unfertilized soil (control). The combination of manure and mineral fertilizers increased the coarse and fine non-protected C (cPOM and fPOM) contents much more (34.1–60.7%) than did manure alone. PLFAs, bacteria, G (+) bacteria, and actinomycete abundances were the highest in soil with manure, followed by soil treated with manure combined with mineral N. The addition of inorganic and organic fertilization both altered the microbial community composition compared with the control. All SOM fractions contributed to 81.1% of the variance of the PLFAs-related microbial community composition by direct and indirect effects. The change in coarse unprotected particulate organic matter (cPOM) was the major factor affecting soil microbial community composition (p < 0.001). Our study indicates that physical, chemical, and biochemical protection mechanisms are important in maintaining high SOC level after the addition of manure. A close linkage between soil microbial community composition and cPOM suggests that C availability is an important factor for influencing microbial composition after long-term inorganic and organic fertilization.  相似文献   

12.
Plants often impact the rate of native soil organic matter turnover through root interactions with soil organisms; however the role of root-microbial interactions in mediation of the “priming effect” is not well understood. We examined the effects of living plant roots and N fertilization on belowground C dynamics in a California annual grassland soil (Haploxeralf) during a two-year greenhouse study. The fate of 13C-labeled belowground C (roots and organic matter) was followed under planted (Avena barbata) and unplanted conditions, and with and without supplemental N (20 kg N ha−1 season−1) over two periods of plant growth, each followed by a dry, fallow period of 120 d. Turnover of belowground 13C SOM was followed using 13C-phospholipid fatty acid (PLFA) biomarkers. Living roots increased the turnover and loss of belowground 13C compared with unplanted soils. Planted soils had 20% less belowground 13C present than in unplanted soils after 2 cycles of planting and fallow. After 2 treatment cycles, unlabeled soil C was 4.8% higher in planted soils than unplanted. The addition of N to soils decreased the turnover of enriched belowground 13C during the first treatment season in both planted and unplanted soils, however no effect of N was observed thereafter. Our findings suggest that A. barbata may increase soil C levels over time because root and exudate C inputs are significant, but that increase will be moderated by an overall faster C mineralization rate of belowground C. N addition may slow soil C losses; however, the effect was minor and transient in this system. The labeled root-derived 13C was initially recovered in gram negative (highest enrichment), gram positive, and fungal biomarkers. With successive growing seasons, the labeled C in the gram negative and fungal markers declined, while gram positive markers continued to accumulate labeled belowground C. The rhizosphere of A. barbata shifted the microbial community composition, resulting in greater abundances of gram negative markers and lower abundances of gram positive, actinobacteria and cyclopropyl PLFA markers compared to unplanted soil. However, the longer-term utilization of labeled belowground C by gram positive bacteria was enhanced in the rhizosphere microbial community compared with unplanted soils. We suggest that the activities of gram positive bacteria may be major controllers of multi-year rhizosphere-related priming of SOM decomposition.  相似文献   

13.
14.
Theoretical approaches to modelling the dynamics of soil organic matter   总被引:1,自引:0,他引:1  
Two theoretical concepts of the formation of the soil organic matter (OM) system are considered as a methodological basis for the mathematical simulation of its dynamics. In the theory of physical protection of OM without the formation of humic substances with the physical fractionation methodolody, the main focus is on the functional parameters of the OM components separated by their mineralization rates. Here, two conceptual disadvantages are noted: (a) neglect of the specificity of OM transformation in organic soil horizons, where humified OM resistant to mineralization is formed, which cannot be explained by this theory; and (b) consideration of the soil microorganisms as a unified undifferentiated complex. In classical humification theory, a number of humification stages are considered with the respective communities of decomposer organisms that mineralize OM and transform biota products into humic substances. The silvicultural concept of humus forms was found to be effective and suitable for a wide range of natural conditions with the use of this theory for OM simulation. There is a general shortcoming to both approaches: protection theory has no parameters of recalcitrant OM formation from other fractions; in humification theory, the quantitative humification parameters under the effect of soil fauna have yet to be sufficiently substantiated. The values of the turnover time for active, intermediate, and recalcitrant OM are revised. The importance of theoretically substantiating the structural and functional organization of OM for its dynamic modelling is emphasized.  相似文献   

15.
Fine surface soil ( < 2 mm) from four sites in Oregon and Washington and three in Costa Rica was separated by repeated notation in NaI solution (sp. gr. < 1.2, 1.4, or 1.6 g cm?3) into a light and a heavy fraction. Most organic matter in the light fractions consisted of partly-decomposed root fragments and other plant and microbial remnants and most in the heavy fractions was adsorbed or deposited on mineral surfaces or was protected within organo-mineral microaggregates. The light fraction had a consistently wider C:N ratio than the heavy, and net N mineralization during anaerobic incubation was greater from the heavy than from the light fraction in five of six soils for which both fractions were incubated. Net N mineralization was greater from the heavy fraction than from the whole soil of most sites perhaps because the light fraction immobilized N released from the heavy fraction when they were incubated together. Correlation between net N mineralization (as a proportion of total N) and C:N ratio was negative for the light fraction (r2=0.74) but positive for the heavy fraction (r2 = 0.85), suggesting that the C:N ratio does not control the extent to which heavy-fraction N is mineralizable.  相似文献   

16.
Earthworms are important processors of soil organic matter (SOM) and nutrient turnover in terrestrial ecosystems. In agroecosystems, they are often seen as beneficial organisms to crop growth and are actively promoted by farmers and extension agents, yet their contribution to agroecosystem services is uncertain and depends largely on management. The Quesungual slash-and-mulch agroforestry system (QSMAS) of western Honduras has been proposed as a viable alternative to traditional slash-and-burn (SB) practices and has been shown to increase earthworm populations, yet the effect of earthworms on soil fertility and SOM in QSMAS is poorly understood. This study examined the role of Pontoscolex corethrurus in QSMAS by comparing their influence on aggregate-associated SOM and fertilizer dynamics with their effects under SB and secondary forest in a replicated field trial. Both the fertilized QSMAS and SB treatments had plots receiving additions of inorganic 15N and P, as well as plots with no inorganic N additions. Earthworm populations were manipulated in field microcosms at the beginning of the rainy season within each management treatment via additions of P. corethrurus or complete removal of existing earthworm populations. Microcosms were destructively sampled at harvest of Zea mays and soils were wet-sieved (using 53, 250 and 2000 μm mesh sizes) to isolate different aggregate size fractions, which were analyzed for total C, N and 15N. The effects of management system were smaller than expected, likely due to disturbance associated with the microcosm installation. Contrary to our hypothesis that earthworms would stabilize organic matter in soil aggregates, P. corethrurus decreased total soil C by 3% in the surface layer (0-15 cm), predominantly through a decrease in the C concentration of macroaggregates (>250 μm) and a corresponding depletion of C in coarse particulate organic matter occluded within macroaggregates. Earthworms also decreased bulk density by over 4%, but had no effect on aggregate size distribution. Within the two fertilized treatments, the QSMAS appeared to retain slightly more fertilizer derived N in smaller aggregate fractions (<250 μm) than did SB, while earthworms greatly reduced the recovery of fertilizer N (34% decrease) in both systems. Although management system did not appear to influence the impact of P. corethrurus on SOM or nutrient dynamics, we suggest the lack of differences may be due to artificially low inputs of fresh residue C to microcosms within all management treatments. Our findings highlight the potential for P. corethrurus to have deleterious impacts on soil C and fertilizer N dynamics, and emphasize the need to fully consider the activities of soil fauna when evaluating agroecosystem management options.  相似文献   

17.
The effect of tropical forest conversion on soil microbial biomass   总被引:3,自引:0,他引:3  
We investigated the effects of converting forest to savanna and plough land on the microbial biomass in tropical soils of India. Conversion of the forest led to a significant reduction in soil organic C (40–46%), total N (47–53%), and microbial biomass C (52–58%) in the savanna and the plough land. Among forest, savanna, and plough land, basal soil respiration was maximum in the forest, but the microbial metabolic quotient (qCO2 was estimated to be at a minimum in the forest and at a maximum in the plough land.  相似文献   

18.
《Soil & Tillage Research》2007,92(1-2):217-226
The one-compartment C model Ct=C0ek2t+k1A/k2(1ek2t) is being long used to simulate soil organic C (SOC) stocks. Ct is the SOC stock at the time t; C0, the initial SOC stock; k2, the annual rate of SOC loss (mainly mineralization and erosion); k1, the annual rate to which the added C is incorporated into SOC; and A, the annual C addition. The component C0ek2t expresses the decay of C0 and, for a time t, corresponds to the remains of C0 (C0 remains). The component k1A/k2(1ek2t) refers, at time t, to the stock of SOC derived from C crops (Ccrop). We herein propose a simple method to estimate k1 and k2 coefficients for tillage systems conducted in long-term experiments under several cropping systems with a wide range of annual C additions (A) and SOC stocks. We estimated k1 and k2 for conventional tillage (CT) and no-till (NT), which has been conducted under three cropping systems (oat/maize −O/M, vetch/maize −V/M and oat + vetch/maize + cowpea −OV/MC) and two N-urea rates (0 kg N ha−1 −0 N and 180 kg N ha−1 −180 N) in a long-term experiment established in a subtropical Acrisol with C0 = 32.55 Mg C ha−1 in the 0–17.5 cm layer. A linear equation (Ct = a + bA) between the SOC stocks measured at the 13th year (0–17.5 cm) and the mean annual C additions was fitted for CT and NT. This equation is equivalent to the equation of the model Ct=C0ek2t+k1A/k2(1ek2t), so that a=C0ek2t and bA=k1A/k2(1ek2t). Such equivalences thus allow the calculation of k1 and k2. NT soil had a lower rate of C loss (k2 = 0.019 year−1) than CT soil (k2 = 0.040 year−1), while k1 was not affected by tillage (0.148 year−1 under CT and 0.146 year−1 under NT). Despite that only three treatments had lack of fit (LOFIT) value lower than the critical 5% F value, all treatments showed root mean square error (RMSE) lower than RMSE 95% indicating that simulated values fall within 95% confidence interval of the measurements. The estimated SOC stocks at steady state (Ce) in the 0–17.5 cm layer ranged from 15.65 Mg ha−1 in CT O/M 0 N to 60.17 Mg ha−1 in NT OV/MC 180 N. The SOC half-life (t1/2 = ln 2/k2) was 36 years in NT and 17 years in CT, reflecting the slower C turnover in NT. The effects of NT on the SOC stocks relates to the maintenance of the initial C stocks (higher C0 remais), while increments in Ccrop are imparted mainly by crop additions.  相似文献   

19.
Particle size fractions of soils from the surface 6 cm of two adjacent grassland plots which, as a result of different fertilizer treatments since 1897, have either a mor or a mull humus form were analysed using solid-state 13C nuclear magnetic resonance spectroscopy and fractionation of organic N by steam distillation. In the mor humus soil, which had received 180 kg (NH4)2SO4 ha?1 annually and was pH 4.3, there was more C and N in the larger particle size fractions than in the mull humus soil (pH 5.8). The NMR spectra of correspondingly sized soil fractions were similar for both soils. The intensities of NMR signals between 0 and 40 ppm (alkyl-C) and between 160 and 200 ppm (carbonyl-C) increased with decreasing particle size. The intensities of the NMR signals between 60 and 90 ppm (0-alkyl-C) and between 90 and 110 ppm (acetal- and ketal-C) decreased with increasing particle size. Comparison of the NMR spectra of the >2000 um fractions from both soils with those of dried grass litter from the same plots indicated the exclusive plant origin of the C in the largest size fraction of the soils. NMR resonances between 40 and 60 ppm were attributed to alkyl-amino-C because their intensities agreed with the amino-N determinations obtained during organic N fractionation. During incubation in soil microcosms, the larger sized fractions decomposed more rapidly than the smaller fractions. However, all the correspondingly sized particle fractions from the two soils decomposed at the same rate except the >2000 pm fractions. The largest size fraction from the mor humus soil decomposed faster than that from the mull humus soil. This difference in decomposition rate could not be attributed to differences in the chemical composition of the >2000 pm fraction.  相似文献   

20.
Soil organic matter (SOM) forms along a continuum from individual particles, pores, and aggregates to litter–soil profiles and larger ecosystems such as forests. However, forest management of SOM stocks and the carbon therein requires knowledge on which processes and factors at which scales determine SOM formation from forest biomass. As evident from woody debris at the profile scale, SOM forms through additions, transformations, translocations, and removals of litter by soil organisms and environmental components. Yet SOM stocks only increase if litter additions-to-removals are out of steady state or enter a new steady state that ignores older litter. Both happen through disturbance and self-selecting feedback processes in ecosystems consisting of autotrophs, heterotrophs, and their physical environment. One such positive feedback process is litter-SOM transformation by heterotrophs that releases nutrients that promote plant productivity and thus litter input. Stocks of litter-SOM, heterotrophs, nutrients, and plants thus exhibit Lotka–Volterra dynamics (i.e., predator–prey interactions) and only increase when attractor states (i.e., steady series or sets of states) change due to disturbance. Evidence of evolving feedback processes and disturbance in SOM would help identify limits, potentials, and precariousness of ecosystems in light of global change, but remains to be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号