首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
为解决苹果园中无线传感器网络的规划和部署问题,该文研究了苹果成熟时苹果园中2.4GHz无线信道在不同高度的信号衰减和丢包率情况。通过实地试验测量了沿着一列果树由距离地面高度0.50m主干处至3.00m处冠层顶部9个高度下各10个距离点的接收信号强度和丢包率,并对试验数据进行回归分析。研究表明:在不同高度层,2.4GHz信号衰减均符合对数路径损耗模型,模拟的相关系数在0.915~0.983之间;高度1.00~2.25m之间信号衰减均较快。高度大于2.25m时,衰减速度随着高度的增加递减,在冠层顶部高3m处达到最小值。因此,苹果园中天线最宜部署在高约3.00m处的冠层顶部或略高于此,其次为高度大于2.25m的冠层上部且较高的位置。同时,建立了用于预测2.4GHz信号在成熟期果园中的信号衰减模型并用额外的数据进行了验证。结果表明:该模型能较好地预测不同高度处不同传输距离点的接收信号强度,为苹果园中无线传感器网络的应用提供了技术支持。  相似文献   

2.
多路径下桃园射频信号传输特性   总被引:1,自引:0,他引:1  
为解决无线传感器网络在桃园中的快速部署问题,该文研究了2.4 GHz无线射频信号在桃园中的传播特性。依据角度选取4条传输路径,在3种(0.5、1.5、2.5 m)典型的天线高度,同时测量丢包率和路径损耗情况,分析表明两者具有明显的相关性,天线高度和通信距离是路径损耗的主要影响因素。在天线高度为0.5和1.5 m时,可靠传输距离为6个行距(27 m);在天线高度为2.5 m时,可靠传输距离大于14个行距(63 m),因此冠层顶部为布设天线的最佳位置。对路径损耗数据进行回归分析,发现其在每种天线高度,每条传输路径下对数模型最适合作为路径损耗模型,模型的R2最大为0.945,最小为0.732。为研究节点部署于桃园任意位置时的路径损耗情况,便于节点快速灵活地部署,在3种天线高度下对路径损耗数据进行对数回归分析,R2最大为0.976,最小为0.939。最后对2组模型进行了验证,表明模型可以预测射频信号在桃园中的路径损耗情况,该文研究结果为无线传感器网络在桃园中的部署提供了参考。  相似文献   

3.
研究无线信号在生猪养殖环境中的传播特性,可以对无线传感器网络的路径损耗进行预测,从而为网络的部署奠定基础。研究采用ZigBee无线传感网络技术,通过在生猪养殖场中实际测试了有障碍物情况下,无线信号的丢包率和接收信号的功率强度,进而得出路径损耗值,以及障碍物的衰减因子,并进行了回归分析。研究表明,墙体衰减因子随墙壁数量增加而增大,植株衰减因子随天线架设高度升高而减小。最终模型的路径损耗参数为2.02,路径损耗的基础损耗为63.602,以混凝土墙为障碍物时,其衰减因子大小为2.64。将障碍物的衰减因子综合添加在经验模型中,可以有效的预测路径损耗值。  相似文献   

4.
柿园无线传感器网络信号传输损耗研究   总被引:1,自引:1,他引:0  
为探究柿园无线传感器网络信号传输特性,该文研究了在2.4 GHz无线信道下柿树处于萌芽期、幼叶期和花期3种时期时无线网络信号传输的衰减情况。试验中分别在柿子树萌芽期、幼叶期和花期3个生长时期下选择一列长势均匀的柿树,通过调节子节点和汇聚节点装置的高度和距离测量柿子树从距离地面3个高度冠层底部(0.8 m)、冠层最密部(1.8 m)和冠层顶部(2.8 m)处各8个距离点的链路质量指示值(link quality indicator,LQI),并对试验数据进行分析。结果表明LQI值随着距离的变化呈正弦曲线式衰减趋势。萌芽期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距38 m时是最佳位置;幼叶期时子节点和汇聚节点的高度均位于冠层顶部,节点间距32 m时是最佳位置;花期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距26 m时是最佳位置。通过对3次数据进行曲线拟合分析分别建立了在2.4 GHz信道下信号衰减模型,其中3种生长时期下均是三次多项式模型决定系数R2最大,为最适模型。果园中无线传感器网络信号传输损耗的研究为在果园中无线传感器网络节点部署提供了技术基础。  相似文献   

5.
为解决橘园中无线传感器网络(WSN)规划和快速部署问题,该文基于无线射频信号的传播特性,研究了橘园中WSN射频信号与影响因素间的关系。试验中选取433 MHz载波频率,基于连续无线电波分析了WSN射频信号受植被深度、天线高度和通信距离等因素联合作用下射频信号在橘园的衰减情况,建立了橘园中不同影响因素作用下,433 MHz无线射频信号接收强度与环境传播因子及通信距离间的线性模型,拟合曲线的R2最低为0.797,最高为0.980,验证了此模型用来预测橘园中影响因素对接收信号强度衰减趋势的可行性;得到了基于无线射频信号接收强度指示下不同植被深度、天线高度和通信距离变化联合作用下的最佳天线高度分布表,为无线传感器网络在橘园中的节点部署提供指导。  相似文献   

6.
基于无线传感器网络的农田信息采集节点设计与试验(简报)   总被引:12,自引:6,他引:12  
研究基于ZigBee协议的无线传感器网络技术,结合嵌入式处理器开发了无线传感器网络节点和汇聚节点。网络节点规则分布在被监测区域,负责采集土壤水分信息,并自组成网,将信息发送给汇聚节点,实现对信息的动态显示和大容量存储;节点天线分别在0.5、1.0、1.5和2.0 m 4个高度下,对小麦苗期、拔节期和抽穗期3个典型的生长时期进行试验,得出无线电信号在小麦不同生长时期,最佳天线高度下的有效传输距离,为无线传感器网络在农业中的应用提供技术支持。  相似文献   

7.
农业环境信息无线传感器网络监测技术研究进展   总被引:9,自引:6,他引:3  
无线传感器网络是实现农业环境变量信息多方位、网络化远程监测的主要技术手段。无线地上传感器网络应用研究集中在作物不同生长期内节点布设距离和高度以及作物高度等对无线电信号传输损失的影响,从而合理选择节点布设参数。无线地下传感器网络应用研究集中在气象环境、土壤类型、土壤含水率、土壤结构与成分、节点埋藏深度、节点距离、频率与功率范围、网络拓扑结构、路由算法、组网方式等对电磁波多路径传输的路径损失、误码率、最大传输距离、含水量测试误差等方面的影响。研究指出,300~500 MHz的频率更适合土壤无线地下传感器网络,其最大传输距离为5 m,传输距离将是系统大面积推广应用的主要限制因素。今后重点应研究433 MHz电磁波在不同土壤和空气多层介质中的传输特性、信道模型及路径损失,优化节点和网络技术参数,确定不同农业应用环境条件下传感器网络节点合理位置和最优的网络拓扑结构方案。  相似文献   

8.
山地橘园无线环境监测系统优化设计及提高监测有效性   总被引:1,自引:1,他引:1  
针对山地橘园生长环境时空变异大,气候复杂多变的情况,对山地橘园无线监测系统进行了优化设计及试验,以实现橘园生长环境信息的有效监测。设计了适合山地橘园环境工作的信息帧结构,引入了双向指令控制机制,节点拓扑发现,路由监测以及节点信息多样化采集优化机制,以增强山地环境下橘园信息采集的鲁棒性和可控性。对橘园无线信道衰减情况进行了测试,引入阻挡和雨衰因子建立无线信道衰减模型,并用于指导橘园无线监测网络部署试验。无线信道衰减分析与网络部署试验结果表明,在复杂气候条件下,系统天线部署高度在1.5 m,单跳通信距离在30 m内,可较好地完成山地橘园环境信息采集和传输任务。744 h的连续监测运行试验数据表明,优化设计后的无线监测系统信息传输成功率得到了提高,30 m距离内的传输成功率在99.12%以上,监测系统工作稳定,运行良好,适于野外条件下山地橘园生长环境无人远程实时监测工作。  相似文献   

9.
为解决应用无线传感器网络技术监测农田信息时无法快速预测射频信号路径损耗的问题,基于神经网络理论研究了田间路径损耗与其影响因素间的关系。试验中选取915和2 470 MHz 2个载波频率,在冬小麦的不同生长阶段测量射频信号在田间各影响因素作用下的路径损耗,建立和验证基于神经网络的射频信号田间路径损耗预测模型。所建立模型模拟值与实测值的相关系数为0.92,应用建立的神经网络预测田间射频信号路径损耗并与实测值对比,最大预测误差绝对值为4.186 dB,最大预测标准差为2.759 dB,预测准确度为94.2%。所建立的BP网络可以对田间射频信号路径损耗进行预测。  相似文献   

10.
为解决日光温室内部传感器驱动电路的供电受有线供电制约的问题,使传感器安装及其供电设计模块化、简单化,该文运用无线输电及微波传输技术,将磁控管CK-620A产生的微波作为温室内传感器驱动电路的供电电源。以所搭建的光伏微波无线电力传输系统为基础,探究从发射端到接收端的传输过程中,植被散射、空间电磁波环境对传输效率的影响。以冬季哈尔滨市12月份一天内不同距离、不同时间段下以黄瓜为主的日光温室为试验对象,测试并分析了其对光伏微波无线电力传输系统接收功率的影响。探究了提高日光温室无线输电系统传输效率的方法,提出了低功率损耗的微波发射源设计方案,给出了理论电路图。试验结果表明,当发射功率500 W时,系统能够对8 m范围内的传感器设备进行有效供电。但距离场源较近的位置,易受散射的影响。采用6?7结构的微带天线,最大辐射方向的增益与采用矩形喇叭天线的方式相比提高了0.28 d B,即天线的定向性要好一些,在0~8 m内接收功率平均可提高1.58 W。  相似文献   

11.
农业生态环境的物理形态和结构复杂多样,对WSN(wireless sensor networks)的无线信号传输造成不同衰减影响。为确保无线传感器网络在农业环境中经济、合理、高效部署,有必要明确典型农业环境中无线传感节点间的有效传输距离。该文基于Shadowing信号衰减模型,利用当前通用的CC2530和CC2591无线通信模块,分别选定4种不同农业环境(湖泊、草地、农田、树林)开展单跳组网试验,通过设定不同距离测试传感器节点的接收信号强度指标(received signal strength indication,RSSI),分析不同环境中RSSI与传输距离间的变化特征。试验结果表明,所有测试环境获得的RSSI值与有效距离遵从Shadowing模型,其拟合度在0.9232~0.9846之间。通过对实测数据建立拟合模型,以接收节点的灵敏度为临界值,计算出湖泊、草地、农田、树林4种环境的理论传输距离分别为663.3,419.3,208.0和79.5 m,而实测有效传输距离与理论值之间的相对误差在22%~34%之间。从误差分布看,复杂环境的实测值更接近理论值,而特殊结构的复杂环境似对实际信号传输有增强作用。该文的研究方法和模型估算获得的信号衰减系数可为实际环境监测组网提供有益参考。  相似文献   

12.
针对水稻生长过程环境因素变化较大以及传感器节点的能量大部分被无线射频阶段所消耗,设计了发射功率自适应的无线传感器节点,建立了长时间、稳定、高可靠性的稻田无线传感器网络。试验测试了水稻的株高、叶面积与生长天数的关系以及对无线信道的影响,结果表明水稻株高和叶面积的增加会降低无线信号强度和通信成功率;通过增大发射功率可以提高通信质量克服由于水稻生长因数对无线信道的影响。在软件设计方面,传感器节点采用睡眠、苏醒工作机制来降低功耗。同时为了延长工作时间、提高通信质量,提出了根据水稻生长周期、通信距离、接收信号强度、平均丢包率等因素自动调整节点发射功率的能量自适应功耗调整机制。田间试验结果表明,水稻田节点发射功率越大,有效通信距离越远,且水稻的密度和高度等对通信有重要的影响;节点发射功率在5 dBm以下时,发射功率的改变对节点工作电流影响较小,节点工作电流均小于40 mA;采用该机制对发射功率进行调整,增大节点发射功率可使通信成功率有大幅的提升;降低节点发射功率仍然保持良好的通信效果。水稻分蘖和抽穗2个生长时期的田间试验结果表明,采用发射功率自适应策略,提高了通信质量,平均丢包率在5%以下,通信成功率大于97%,达到了预期设计目的。  相似文献   

13.
基于780MHz频段的温室无线传感器网络的设计及试验   总被引:1,自引:1,他引:0  
针对以往农用无线传感器网络(wireless sensor network,WSN)能耗与成本较高、传输性能不理想等问题,该文选用无线射频芯片AT86RF212、单片机C8051F920等,设计了一种工作在780 MHz中国专用频段且与IEEE802.15.4c标准兼容的无线传感器网络。该文简述了无线传感器网络节点结构,重点介绍了780 MHz无线传感器网络的硬件设计,并选择北方典型的日光温室作为试验研究环境,通过改变无线收发距离,对780、433和2 400 MHz频段的无线传感器网络节点的接收信号强度值(RSSI,received signal strength index)和平均丢包率(PLR,packet loss rate)进行了测试与分析。试验结果表明,3种不同频段的无线收发模块的接收信号强度值RSSI都随着收发距离的增大而减小。在温室内测试,收发距离小于20 m时,3种无线模块的RSSI值相近;收发距离为40~90 m时,7803 MHz模块比433 MHz模块的RSSI值略大,2.4 GHz的RSSI值最小。在温室内收发距离小于90 m的范围内,780 MHz模块和433 MHz模块的丢包率均为0,2.4 GHz模块的最高丢包率不超过5%。在温室间测试,收发距离为50~90 m时,780 MHz模块和433 MHz模块的RSSI值相近;收发距离大于90 m时,780 MHz模块比433 MHz模块的RSSI值大;2.4 GHz模块在温室间收发距离为50~140 m时的RSSI值均小于433、780 MHz。2.4 GHz模块在收发距离大于70 m时出现丢包现象,收发距离大于135 m时丢包率达到100%;温室间收发距离为140 m时,433 MHz模块的最大丢包率为11%,780 MHz的最大丢包率不超过6%。因此,在温室环境监测的应用中,780 MHz频段的无线传感器网络的传输性能表现最佳,且与433 MHz都明显优于2.4 GHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号