首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
ObjectiveTo assess anesthetic induction, recovery quality and cardiopulmonary variables after intramuscular (IM) injection of three drug combinations for immobilization of horses.Study designRandomized, blinded, three-way crossover prospective design.AnimalsA total of eight healthy adult horses weighing 470–575 kg.MethodsHorses were administered three treatments IM separated by ≥1 week. Combinations were tiletamine–zolazepam (1.2 mg kg−1), ketamine (1 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TKD); ketamine (3 mg kg−1) and detomidine (0.04 mg kg−1) (treatment KD); and tiletamine–zolazepam (2.4 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TD). Parametric data were analyzed using mixed model linear regression. Nonparametric data were compared using Skillings–Mack test. A p value <0.05 was considered statistically significant.ResultsAll horses in treatment TD became recumbent. In treatments KD and TKD, one horse remained standing. PaO2 15 minutes after recumbency was significantly lower in treatments TD (p < 0.0005) and TKD (p = 0.001) than in treatment KD. Times to first movement (25 ± 15 minutes) and sternal recumbency (55 ± 11 minutes) in treatment KD were faster than in treatments TD (57 ± 17 and 76 ± 19 minutes; p < 0.0005, p = 0.001) and TKD (45 ± 18 and 73 ± 31 minutes; p = 0.005, p = 0.021). There were no differences in induction quality, muscle relaxation score, number of attempts to stand or recovery quality.Conclusions and clinical relevanceIn domestic horses, IM injections of tiletamine–zolazepam–detomidine resulted in more reliable recumbency with a longer duration when compared with ketamine–detomidine and tiletamine–zolazepam–ketamine–detomidine. Recoveries were comparable among protocols.  相似文献   

2.
ObjectiveTo evaluate the anaesthetic and cardiorespiratory effects of four anaesthetic protocols in red foxes (Vulpes vulpes).Study designProspective, blinded and randomized complete block design.AnimalsTen adult captive red foxes.MethodsFoxes were anaesthetized by intramuscular (IM) injection using four protocols in random order: medetomidine 40 μg kg?1, midazolam 0.3 mg kg?1 and butorphanol 0.1 mg kg?1 (MMiB), medetomidine 40 μg kg?1 and ketamine 4 mg kg?1 (MK40/4), medetomidine 60 μg kg?1 and ketamine 4 mg kg?1 (MK60/4), medetomidine 40 μg kg?1 and tiletamine/zolazepam 2 mg kg?1 (MTZ). Time to lateral recumbency, induction time and time to recovery following IM administration of atipamezole 0.2 mg kg?1 were recorded. Heart rate (HR), respiratory rate (fR) and rhythm, blood pressure, rectal temperature, end-tidal CO2 tension (Pe′Co2), functional oxygen saturation and presence/absence of interdigital, palpebral and ear reflexes were recorded every 10 minutes, and following administration of atipamezole. Data were analysed using two-way repeated-measures anova with Bonferroni post tests; p < 0.05 was considered significant.ResultsAll protocols produced profound sedation with good muscle relaxation. Only the MMiB protocol diverged significantly from the others. Induction of anaesthesia and recovery time following atipamezole were significantly longer, and fR and initial HR significantly lower with MMiB than with the other protocols. With all protocols, mean arterial blood pressure (MAP) was initially relatively high (140–156 mmHg), and decreased significantly over time. With all protocols, the administration of atipamezole resulted in a rapid, significant decrease in MAP and an increase in HR.Conclusions and clinical relevanceAll four protocols provided anaesthetic conditions suitable for minor procedures and allowed endotracheal intubation. The cyclohexanone protocols provided quicker and more reliable inductions and recoveries than the MMiB protocol.  相似文献   

3.
ObjectiveTo evaluate the effects of medetomidine, midazolam and ketamine (MMK) in captive gorillas after premedication with oral zuclopenthixol.Study designCase series.AnimalsSix gorillas, two males and four females, aged 9–52 years and weighing 63–155 kg.MethodsThe gorillas were given zuclopenthixol dihydrochloride 0.2 ± 0.05 mg kg?1 per os twice daily for 3 days for premedication. On the day of anaesthesia the dose of zuclopenthixol was increased to 0.27 mg kg?1 and given once early in the morning. Anaesthesia was induced with medetomidine 0.04 ± 0.004 mg kg?1, midazolam 0.048 ± 0.003 mg kg?1 and ketamine 4.9 ± 0.4 mg kg?1 intramuscularly (IM). Upon recumbency, the trachea was intubated and anaesthesia was maintained on 1–2% isoflurane in oxygen. Physiological parameters were monitored every 10 minutes and arterial blood gas analysis was performed once 30–50 minutes after initial darting. At the end of the procedure, 42–115 minutes after initial darting, immobilisation was antagonized with atipamezole 0.21 ± 0.03 mg kg?1 and sarmazenil 5 ± 0.4 μg kg?1 IM.ResultsRecumbency was reached within 10 minutes in five out of six animals. One animal required two additional darts before intubation was feasible. Heart rate ranged from 60 to 85 beats minute?1, respiratory rate from 17 to 46 breaths minute?1 and temperature from 36.9 to 38.3 °C. No spontaneous recoveries were observed and anaesthetic level was stable. Blood gas analyses revealed mild respiratory acidosis, and mean PaO2 was 24.87 ± 17.16 kPa (187 ± 129 mmHg) with all values being above 13.4 kPa (101 mmHg). Recovery was smooth and gorillas were sitting within 25 minutes.Conclusion and clinical relevanceThe drug combination proved to be effective in anaesthetizing captive gorillas of various ages and both sexes, with minimal cardio-respiratory changes.  相似文献   

4.
ObjectiveTo provide reliable, effective immobilization for Weddell seals under extreme field conditions using an injectable ketamine/midazolam combination.Study designObservational study.AnimalsThirty adult Weddell seals (12 male, 18 female) in Erebus Bay, Antarctica, body mass (mean ± SD) 412 ± 47 kg, aged 9–27 years.MethodsSeals were immobilized with a target dose of 2 mg kg?1 ketamine hydrochloride and 0.1 mg kg?1 midazolam hydrochloride (IM), based on visually estimated body mass. When required, maintenance doses were administered at a target of 0.5 mg kg?1 ketamine hydrochloride and 0.025 mg kg?1 midazolam hydrochloride (IV).ResultsComplete immobilization was achieved in 33 of 40 injections (14 of which were repeat events on the same individual). Time to immobilization averaged 12 ± 4 minutes, with a duration of initial immobility of 38 ± 19 minutes. Total immobilization time varied by handling protocol, including condition assessment and muscle biopsy (Protocol 1, 60 ± 13 minutes), condition assessment and instrument attachment (Protocol 2, 154 ± 13 minutes), and condition assessment, muscle biopsy and instrument retrieval (Protocol 3, 48 ± 8 minutes). Overall, a total immobilization time of 114 ± 60 minutes was accomplished with 4 ± 4 maintenance doses, and an average recovery time of 36 ± 17 minutes. Most effects of the anesthetic combination were unrelated to mass, age, sex or total body fat. However, leaner seals had longer duration of initial immobility (% and kg total body fat) and recovery times (kg fat). Apnea events were uncommon and treated effectively with doxapram. No animals died.Conclusions and clinical relevanceReliable and effective field immobilization of Weddell seals was accomplished with a low dose of ketamine hydrochloride and midazolam hydrochloride, utilizing IM injection initially and IV maintenance methods.  相似文献   

5.
ObjectiveTo evaluate the cardiorespiratory effects and plasma concentrations of medetomidine-midazolam-ketamine (MMK) combinations administered by intramuscular (IM) or subcutaneous (SC) injection in sable ferrets (Mustela putorius furo).Study designProspective randomized experimental study.AnimalsEighteen adult ferrets: weight median 1.19 (range 0.81–1.60) kg.MethodsAnimals were allocated to one of three groups: group IM07 received 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 7 mg kg?1 ketamine IM; group IM10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine IM; and group SC10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine SC. Following instrumentation, cardiorespiratory parameters and plasma drug concentrations were measured every 5 minutes (T5–T30) for 30 minutes Ferrets were then euthanased. Data were analysed using anova for repeated measures. p < 0.05 was considered significant.ResultsResults are mean ± SD. Induction of anaesthesia (minutes) in IM07 and IM10 [2 (1)] was significantly faster than in SC10 [5 (2)]. All groups demonstrated the following: results given as groups IM07, IM10 and SC10 respectively. Mean arterial blood pressures (mmHg) were initially high [186 (13); 174 (33) and 174 (9) at T5] but decreased steadily. Pulse rates were initially 202 (20), 213 (17) and 207 (33) beats minute?1, decreasing with time. PaO2 (mmHg) was low [54.0 (8), 47.7 (10) and 38.5 (1)] at T5, although in groups IM07 and IM10 it increased over time. Plasma concentrations of all drugs were highest at T5 (36, 794 and 8264 nmol L?1 for medetomidine, midazolam and ketamine, respectively) and decreased thereafter: for both midazolam and ketamine, concentrations in IM07 and IM10 were higher than SC10.Conclusions and clinical relevanceMMK combinations containing either 7 or 10 mg kg?1 ketamine and given IM are suitable combinations for anaesthetising ferrets, although the observed degree of hypoxaemia indicates that oxygen administration is vital.  相似文献   

6.
ObjectiveTo develop a safe and effective immobilization protocol in rhesus monkeys, which is not based on dissociative anaesthetic agent.Study designProspective, randomised, experimental trial.AnimalsTwenty rhesus monkeys, weighing 2.6–8.0 kg, 1–3 years of age, of both sexes.MethodsThe monkeys received 50 μg kg?1 medetomidine, 0.25 mg kg?1 midazolam and 5 μg kg?1 fentanyl with 150 IU hyaluronidase intramuscularly (IM). The animals were closely observed for behavioural changes and reaction to sound stimulus. Pulse rate and oxygen saturation of haemoglobin (SpO2) were monitored every 5 minutes, for 20 minutes. After this period, 250 μg kg?1 atipamezole or a placebo was administered IM and behavioural changes were closely observed.ResultsFull immobilization was observed after mean 269 ± SD 116 seconds. Ten minutes after injection mean arterial oxygen saturation of haemoglobin was 94 ± 4%, but did not fall significantly further. The median pulse rate was 116 beats minute?1 5 minutes after the administration of the drug. This level further decreased to a median level of 108 beats minute?1 20 minutes after the drug's administration. The median time to recover from immobilization was significantly shorter after atipamezole administration when compared to placebo (2.7 versus 55 minutes). All animals awoke smoothly and no side effects such as vomiting or agitation were observed.ConclusionsShort term and reversible pharmacological immobilization was achieved using combination of midazolam, medetomidine, and fentanyl.Clinical relevanceThe present study demonstrates that 20-minute pharmacological immobilization with a combination of midazolam, medetomidine, and fentanyl is feasible in rhesus monkeys with minimal effect on heart rate.  相似文献   

7.
ObjectivesTo characterize the cardiopulmonary and anesthetic effects of alfaxalone at three dose rates in comparison with a ketamine–dexmedetomidine–midazolam–tramadol combination (KDMT) for immobilization of golden-headed lion tamarins (GHLTs) (Leontopithecus chrysomelas) undergoing vasectomy.Study designProspective clinical trial.AnimalsA total of 19 healthy, male, wild-caught GHLTs.MethodsTamarins were administered alfaxalone intramuscularly (IM) at 6, 12 or 15 mg kg–1, or KDMT, ketamine (15 mg kg–1), dexmedetomidine (0.015 mg kg–1), midazolam (0.5 mg kg–1) and tramadol (4 mg kg–1) IM. Immediately after immobilization, lidocaine (8 mg kg–1) was infiltrated subcutaneously (SC) at the incision site in all animals. Physiologic variables, anesthetic depth and quality of immobilization were assessed. At the end of the procedure, atipamezole (0.15 mg kg–1) was administered IM to group KDMT and tramadol (4 mg kg–1) SC to the other groups; all animals were injected with ketoprofen (2 mg kg–1) SC.ResultsA dose-dependent increase in sedation, muscle relaxation and immobilization time was noted in the alfaxalone groups. Despite the administration of atipamezole, the recovery time was longer for KDMT than all other groups. Muscle tremors were noted in some animals during induction and recovery with alfaxalone. No significant differences were observed for cardiovascular variables among the alfaxalone groups, whereas an initial decrease in heart rate and systolic arterial blood pressure was recorded in KDMT, which increased after atipamezole administration.Conclusions and clinical relevanceAlfaxalone dose rates of 12 or 15 mg kg–1 IM with local anesthesia provided good sedation and subjectively adequate pain control for vasectomies in GHLTs. KDMT induced a deeper plane of anesthesia and should be considered for more invasive or painful procedures. All study groups experienced mild to moderate hypothermia and hypoxemia; therefore, the use of more efficient heating devices and oxygen supplementation is strongly recommended when using these protocols.  相似文献   

8.
ObjectiveTo investigate the impact of intramuscular (IM) co-administration of the peripheral α2-adrenoceptor agonist vatinoxan (MK-467) with medetomidine and butorphanol prior to intravenous (IV) ketamine on the cardiopulmonary and anaesthetic effects in dogs, followed by atipamezole reversal.Study designRandomized, masked crossover study.AnimalsA total of eight purpose-bred Beagle dogs aged 3 years.MethodsEach dog was instrumented and administered two treatments 2 weeks apart: medetomidine (20 μg kg–1) and butorphanol (100 μg kg–1) premedication with vatinoxan (500 μg kg–1; treatment MVB) or without vatinoxan (treatment MB) IM 20 minutes before IV ketamine (4 mg kg–1). Atipamezole (100 μg kg–1) was administered IM 60 minutes after ketamine. Heart rate (HR), mean arterial (MAP) and central venous (CVP) pressures and cardiac output (CO) were measured; cardiac (CI) and systemic vascular resistance (SVRI) indices were calculated before and 10 minutes after MVB or MB, and 10, 25, 40, 55, 70 and 100 minutes after ketamine. Data were analysed with repeated measures analysis of covariance models. A p-value <0.05 was considered statistically significant. Sedation, induction, intubation and recovery scores were assessed.ResultsAt most time points, HR and CI were significantly higher, and SVRI and CVP significantly lower with MVB than with MB. With both treatments, SVRI and MAP decreased after ketamine, whereas HR and CI increased. MAP was significantly lower with MVB than with MB; mild hypotension (57–59 mmHg) was recorded in two dogs with MVB prior to atipamezole administration. Sedation, induction, intubation and recovery scores were not different between treatments, but intolerance to the endotracheal tube was observed earlier with MVB.Conclusions and clinical relevanceHaemodynamic performance was improved by vatinoxan co-administration with medetomidine–butorphanol, before and after ketamine administration. However, vatinoxan was associated with mild hypotension after ketamine with the dose used in this study. Vatinoxan shortened the duration of anaesthesia.  相似文献   

9.
ObjectiveTo describe the effects of alpha2-adrenergic receptor antagonists on the pharmacodynamics of sublingual (SL) detomidine in the horse.Study designRandomized crossover design.AnimalsNine healthy adult horses with an average age of 7.6 ± 6.5 years.MethodsFour treatment groups were studied: 1) 0.04 mg kg?1 detomidine SL; 2) 0.04 mg kg?1 detomidine SL followed 1 hour later by 0.075 mg kg?1 yohimbine intravenously (IV); 3) 0.04 mg kg?1 detomidine SL followed 1 hour later by 4 mg kg?1 tolazoline IV; and 4) 0.04 mg kg?1 detomidine SL followed 1 hour later by 0.12 mg kg?1 atipamezole IV. Each horse received all treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for yohimbine, atipamezole and tolazoline concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume (PCV) and plasma proteins were monitored.ResultsChin-to-ground distance increased following administration of the antagonists, however, this effect was transient, with a return to pre-reversal values as early as 1 hour. Detomidine induced bradycardia and increased incidence of atrioventricular blocks were either transiently or incompletely antagonized by all antagonists. PCV and glucose concentrations increased with tolazoline administration, and atipamezole subjectively increased urination frequency but not volume.Conclusions and clinical relevanceAt the doses administered in this study, the alpha2-adrenergic antagonistic effects of tolazoline, yohimbine and atipamezole on cardiac and behavioral effects elicited by SL administration of detomidine are transient and incomplete.  相似文献   

10.
ObjectiveTo establish a safe, reliable and reversible immobilization protocol for captive juvenile crocodiles.Study designProspective, randomized, clinical study.AnimalsThirty male estuarine crocodiles (body mass 1–12.1 kg) and 10 male Australian freshwater crocodiles (body mass 4.1–12.8 kg).MethodsAn optimized dose of medetomidine (0.5 mg kg?1) was administered intramuscularly (IM) into the tail (Group 1; n = 5), pelvic limb (Group 2; n = 5) and thoracic limb (Groups 3 and 4; n = 5 in each group) of estuarine crocodiles weighing 3–12.1 kg. Their heart and respiratory rates and degree of immobilization were monitored every 15 minutes until recovery and daily thereafter for 3 subsequent days. In Group 4 (n = 5), medetomidine was antagonized with an optimized dose of atipamezole (2.5 mg kg?1) given IM into the thoracic limb and time to recovery recorded. The effects of increasing doses of medetomidine given IM in the thoracic limb (n = 4) and intravenously (n = 6) were determined in 1–2 kg estuarine crocodiles. Australian freshwater crocodiles (4.1–12.8 kg) were administered medetomidine IM into the thoracic limb in divided doses at 0.5 mg kg?1 (n = 5) and 0.75 mg kg?1 (n = 5) and similarly monitored.ResultsImmobilization was achieved only in the estuarine crocodiles >3 kg and when medetomidine was administered into the thoracic limb. Immobilization was achieved within 30 minutes and the duration of immobilization lasted approximately 90 minutes. Immobilization in estuarine crocodiles was readily reversed with atipamezole. A dose of 0.75 mg kg?1 was required to immobilize Australian freshwater crocodiles and the onset of immobilization was longer and the duration shorter than seen in the estuarine crocodiles. The heart and respiratory rates of all immobilized animals decreased significantly and arterial blood pressure became undetectable in the animals in which it was measured.Conclusions and clinical relevanceMedetomidine administered in the thoracic limb of captive estuarine and Australian freshwater crocodiles, ranging from 3 to 12.8 kg, provides a predictable onset and duration of immobilization sufficient for physical examination, sample collection, short minor procedures and translocation of the animals. Atipamezole administered in the thoracic limb results in complete reversal of the effects of medetomidine in the estuarine crocodile and a rapid return to normal behaviour.  相似文献   

11.

Objective

The fixed-dose combination of butorphanol, azaperone and medetomidine (BAM; 30, 12 and 12 mg mL?1, respectively) with subsequent antagonism by naltrexone–atipamezole was evaluated for reversible immobilization of captive blesbok (Damaliscus pygargus phillipsi).

Study design

Prospective, clinical trial.

Animals

Sixteen blesbok (four males and twelve females), weighing 52.5?71.0 kg, were immobilized in South Africa.

Methods

The total dose of BAM ranged from 0.5 to 0.7 mL for females and 0.7 to 0.9 mL for males. In seven animals chosen randomly, 8000 units of hyaluronidase was added to the dart. Physiologic variables were recorded every 5 minutes beginning at 10?20 minutes after darting. Arterial blood samples were collected three times at 20, 30 and 40 minutes after darting for analysis of blood acid-base status.

Results

The mean administered doses of BAM were as follows: butorphanol (0.34 ± 0.08 mg kg?1), azaperone (0.14 ± 0.03 mg kg?1) and medetomidine (0.14 ± 0.03 mg kg?1). The inductions were calm and smooth. The mean induction time was 9.6 ± 3.2 minutes with just BAM and 5.1 ± 0.8 minutes with BAM and hyaluronidase combination. Heart rate (45 ± 6 beats minute?1) and respiratory frequency (38 ± 4 breaths minute?1) were stable throughout immobilization. The mean arterial blood pressure for all animals was stable but elevated (137 ± 7 mmHg). Rectal temperature slightly increased over time but remained within an acceptable range. The recovery time after administering naltrexone and atipamezole was 4.8 ± 0.7 minutes.

Conclusion and clinical relevance

The BAM combination proved to be reliable and effective in blesbok.  相似文献   

12.

Objective

The butorphanol-azaperone-medetomidine fixed-dose combination (BAM, respectively, 30-12-12 mg mL?1) with subsequent antagonism by naltrexone-atipamezole was evaluated for reversible immobilization of captive cheetahs (Acinonyx jubatus).

Study design

Prospective, clinical trial.

Animals

Twelve cheetahs (six males and six females, weighing 37–57 kg) housed in enclosures, were immobilized at Hoedspruit Endangered Species Centre in the Republic of South Africa.

Methods

BAM volume dose rate was 0.009–0.014 mL kg?1 (mean ± standard deviation 0.010 ± 0.001 mL kg?1). Total dose in all animals was 0.5 mL. The actual doses were as follows: butorphanol (0.29 ± 0.04 mg kg?1), azaperone (0.12 ± 0.01 mg kg?1) and medetomidine (0.12 ± 0.01 mg kg?1). Physiologic variables and quality of immobilization were recorded every 5 minutes beginning at 15–20 minutes after darting. Arterial blood samples were collected three times at 20, 30 and 40 minutes after darting from all animals for analysis of blood oxygenation and acid-base status.

Results

The inductions were calm and smooth and mean induction time was 4.0 ± 1.1 minutes. Heart rate (50 ± 9 beats minute?1) and respiratory frequency (20 ± 3 breaths minute?1) were stable throughout immobilization. The recovery time after reversing with naltrexone and atipamezole was 9.1 ± 3.6 minutes.

Conclusions

and clinical relevance BAM proved to be a reliable and cardiovascular stable drug combination for immobilization of cheetahs.  相似文献   

13.
14.
ObjectiveTo evaluate a combination of acepromazine, dexmedetomidine and ketamine (ADK) on induction and recovery from anaesthesia, and on physiological parameters in hares undergoing non‐invasive procedures.Study designProspective clinical study.AnimalsSixteen European hares (Lepus europaeus), seven males and nine females, aged (mean ± SD) 3.25 ± 0.9 months and weight 2.1 ± 0.6 kg.MethodsAcepromazine 1% (A), dexmedetomidine 0.05% (D) and ketamine 5% (K) were mixed and given intramuscularly (IM) at 0.25 mL kg?1, representing 10 mg kg?1 K, 0.25 mg kg?1 A, 12.5 μg kg?1 D. If the righting reflex was present after four minutes, a second injection of 0.15 mL kg?1 (6 mg kg?1 K, 0.15 mg kg?1 A, 7.5 μg kg?1 D) was administered IM. Surgical anaesthesia was judged as present when righting, palpebral, ear‐pinch and pedal withdrawal reflexes were absent. Anaesthetized hares were tagged, and underwent blood sampling and ocular ultrasound examination. Physiological parameters were recorded every ten minutes, and were compared by Kruskal‐Wallis tests.ResultsA single dose induced loss of righting reflex in 11/16 (69%) hares within four minutes; the second dose was effective in the remaining hares. Ten minutes after the loss of the righting reflex, a surgical plane of anaesthesia was present in all hares. Sleep time to regaining righting reflex was 34 ± 11 (range 21–62) minutes and recovery was calm. Although there were some statistical differences over time, cardiovascular parameters remained within an acceptable range but there was respiratory depression and hares were hypoxemic.Conclusions and clinical relevanceThe ADK mixture produced a smooth and rapid induction of anaesthesia, a low incidence of untoward side effects and full recovery after four hours. Supplementary oxygen might be advisable if a deeper plane of anaesthesia was required. Chemical restraint was adequate to perform non‐invasive procedures.  相似文献   

15.
Objective To characterize intravenous anaesthesia with detomidine, ketamine and guaiphenesin in pregnant ponies. Animals Twelve pony mares, at 260–320 days gestation undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (30 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) preceded induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was measured directly throughout anaesthesia and arterial blood samples were taken at 20‐minute intervals for measurement of blood gases and plasma concentrations of cortisol, glucose and lactate. Anaesthesia was maintained with an IV infusion of detomidine (0.04 mg mL?1), ketamine (4 mg mL?1) and guaiphenesin (100 mg mL?1) (DKG) for 140 minutes. Oxygen was supplied by intermittent positive pressure ventilation (IPPV) adjusted to maintain PaCO2 between 5.0 and 6.0 kPa (38 and 45 mm Hg), while PaO2 was kept close to 20.0 kPa (150 mm Hg) by adding nitrous oxide. Simultaneous fetal and maternal blood samples were withdrawn at 90 minutes. Recovery quality was assessed. Results DKG was infused at 0.67 ± 0.17 mL kg?1 hour?1 for 1 hour then reduced, reaching 0.28 ± 0.14 mL kg?1 hour?1 at 140 minutes. Arterial blood gas values and pH remained within intended limits. During anaesthesia there was no change in heart rate, but arterial blood pressure decreased by 10%. Plasma glucose and lactate increased (10‐fold and 2‐fold, respectively) and cortisol decreased by 50% during anaesthesia. Fetal umbilical venous pH, PO2 and PCO2 were 7.34 ± 0.06, 5.8 ± 0.9 kPa (44 ± 7 mm Hg) and 6.7 ± 0.8 kPa (50 ± 6 mm Hg); and fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 4.0 ± 0.7 kPa (30 ± 5 mm Hg) and 7.8 ± 1.7 kPa (59 ± 13 mm Hg), respectively. Surgical conditions were good but four ponies required a single additional dose of ketamine. Ponies took 60 ± 28 minutes to stand and recovery was good. Conclusions and clinical relevance Anaesthesia produced with DKG was smooth while cardiovascular function in mare and fetus was well preserved. This indicates that DKG infusion is suitable for maintenance of anaesthesia in pregnant equidae.  相似文献   

16.
Objective To evaluate the sedative effects of medetomidine, and a medetomidine–midazolam combination, in Japanese macaques and the antagonism of medetomidine–midazolam with atipamezole. Study design Prospective randomized study. Animals Thirteen healthy Japanese macaques between 3 and 21 years old and weighing between 4.3 and 15.1 kg. Methods Medetomidine (120 µg kg?1) alone or a medetomidine (30 µg kg?1) plus midazolam (0.3 mg kg?1) mixture were injected intramuscularly in the hind limb of 12 animals (n = 6 for each group) and their effects, particularly behavioural changes, response to external stimuli, sedative onset time, time to lateral recumbency and time in lateral recumbency, were monitored for 120 minutes. Another group (n = 7) were given medetomidine–midazolam and injected 30 minutes later with atipamezole (120 µg kg?1). Behavioural changes and responses to external stimuli were assessed as before. Results Animals given medetomidine became sedated but could be aroused by external stimuli. Despite the lower (25%) dose of medetomidine involved, the effects of medetomidine–midazolam were more marked. Macaques given this combination became sedated in 4 ± 2 minutes (mean ± SD) and remained unresponsive to external stimuli for at least 60 minutes. Five out of six macaques became laterally recumbent for 74 ± 37 minutes. Intramuscular atipamezole effectively reversed sedation, shortening the arousal and total recovery time. The recovery from sedation was rapid and smooth, being completed 19 ± 11 minutes after antagonism. Conclusions The medetomidine–midazolam combination described provided useful chemical restraint and may prove useful in macaques undergoing some experimental, diagnostic or therapeutic procedures. The use of atipamezole as an antagonist increases the value of this technique in macaques.  相似文献   

17.

Objective

To describe the anaesthetic, physiological and side effects of intramuscular (IM) medetomidine and ketamine, followed by inhalational anaesthesia with sevoflurane, in Nile crocodiles (Crocodylus niloticus).

Study design

Observational trial.

Animals

Ten juvenile captive-bred Nile crocodiles undergoing surgical implantation of skeletal beads and muscular electrodes.

Methods

During preanaesthetic examination, the following variables were assessed: heart (HR) and respiratory (fR) rates, and response to palpebral, corneal and toe- and tail-pinch withdrawal reflexes. The crocodiles were injected IM with an initial combination of medetomidine and ketamine and re-evaluated at 5 minute intervals for 20 minutes, or until they appeared unresponsive. If that did not occur, the drugs were redosed according to a decision tree based on the observed effects. The righting, biting and palatal valve reflexes were assessed in the unresponsive crocodiles, and used to confirm anaesthetic induction. Anaesthesia was maintained with sevoflurane in oxygen. At the end of surgery, medetomidine was antagonized with IM atipamezole.

Results

The decision tree identified 0.3 mg kg?1 medetomidine and 15 mg kg?1 ketamine as a useful drug combination, which resulted in anaesthetic induction and surgical anaesthesia 16 ± 8 and 16 (25–20) minutes after injection, respectively. Compared to baseline, HR and fR significantly decreased after anaesthetic induction (p < 0.001), but then remained stable throughout surgery. Intraoperatively, cloacal temperature [27 (26–30) °C] did not change over time (p = 0.48). The total dose of atipamezole was 2 (1–3) mg kg?1 and time to recovery was 36 (20–60) minutes. Perioperative complications were not observed.

Conclusions

and clinical relevance Medetomidine and ketamine, injected IM and followed by sevoflurane anaesthesia, may be regarded as a useful anaesthetic technique for juvenile Nile crocodiles undergoing minimally invasive experimental surgery.  相似文献   

18.
ObjectiveTo evaluate the anesthetic effects of two drug combinations with local anesthesia, with or without postoperative antagonists, for orchiectomy in cats.Study designProspective, randomized blinded clinical study.AnimalsA total of 64 healthy cats.MethodsCats were assigned to four equal groups: ketamine (5 mg kg–1) and dexmedetomidine (10 μg kg–1) were administered intramuscularly (IM), followed postoperatively with intravenous (IV) saline (5 mL; group KDS) or atipamezole (50 μg kg–1; group KDA); and ketamine (14 mg kg–1) with midazolam (0.5 mg kg–1) and acepromazine (0.1 mg kg–1) IM, with postoperative IV saline (5 mL; group KMAS) or flumazenil (0.1 mg kg–1; group KMAF). Lidocaine (2 mg kg–1) was divided between subcutaneous and intratesticular injection. Physiologic variables were recorded at time points during anesthesia. Ketamine rescue dose was recorded. The degree of sedation and the quality of recovery were evaluated postoperatively.ResultsTime to loss of pedal reflex was longer in groups KMAS and KMAF than in groups KDS and KDA (p = 0.010). Total rescue dose of ketamine was higher in KMAS and KMAF than in KDS and KDA (p = 0.003). Heart rate (HR) during anesthesia was higher in KMAS and KMAF than in KDS and KDA (p = 0.001). Times to head up (p = 0.0005) and to sternal recumbency (p = 0.0003) were shorter in KDA than in KDS, KMAS and KMAF. Lower sedation scores were assigned sooner to KDA than KDS, KMAS and KMAF (p < 0.001). Recovery quality scores were good in all groups.Conclusions and clinical relevanceBoth anesthetic protocols allowed the performance of orchiectomy. Groups KMAS and KMAF required higher rescue doses of ketamine before injecting lidocaine. HR and oscillometric systolic pressure were minimally changed in groups KD and tachycardia was recorded in groups KMA. Only atipamezole shortened the anesthetic recovery.  相似文献   

19.
ObjectiveTo investigate physiological and sedative/immobilization effects of medetomidine or dexmedetomidine combined with ketamine in free-ranging Chinese water deer (CWD).Study designProspective clinical trial.Animals10 free-ranging adult Chinese water deer (11.0 ± 2.6 kg).MethodsAnimals were darted intramuscularly with 0.08 ± 0.004 mg kg?1 medetomidine and 3.2 ± 0.2 mg kg?1 ketamine (MK) or 0.04 ± 0.01 mg kg?1 dexmedetomidine and 2.9 ± 0.1 mg kg?1 ketamine (DMK) If the animal was still laterally recumbent after 60 minutes of immobilization, atipamezole was administered intravenously (MK: 0.4 ± 0.02 mg kg?1, DMK: 0.2 ± 0.03 mg kg?1). Heart rate (HR) respiratory rate (fR) and temperature were recorded at 5-minute intervals. Arterial blood was taken 15 and 45 minutes after initial injection. Statistical analysis was performed using Student’s t-test or anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in both groups. Most had involuntary ear twitches, but there was no response to external stimuli. There were no statistical differences in mean HR (MK: 75 ± 14 beats minute?1; DMK: 85 ± 21 beats minute?1), fR (MK: 51 ± 35 breaths minute?1; DMK; 36 ± 9 breaths minute?1), temperature (MK: 38.1 ± 0.7 °C; DMK: 38.4 ± 0.5 °C), blood gas values (MK: PaO2 63 ± 6 mmHg, PaCO2 49.6 ± 2.6 mmHg, HCO3? 30.8 ± 4.5 mmol L?1; DMK: PaO2 77 ± 35 mmHg, PaCO2 45.9 ± 11.5 mmHg, HCO3? 31.0 ± 4.5 mmol L?1) and biochemical values between groups but temperature decreased in both groups. All animals needed antagonism of immobilization after 60 minutes. Recovery was quick and uneventful. There were no adverse effects after recovery.Conclusion and clinical relevanceBoth anaesthetic protocols provided satisfactory immobilisation. There was no clear preference for either protocol and both appear suitable for CWD.  相似文献   

20.
ObjectiveTo study the anaesthetic and cardiorespiratory effects of intramuscular (IM) administration of different combinations of romifidine and ketamine in cats.Study designProspective, randomized, cross-over experiment.AnimalsSeven healthy adult cats weighing (mean ± SD) 3.4 ± 0.7 kg and aged 4.6 ± 3.2 years.MethodsAnimals received romifidine 100 μg kg?1 with ketamine 7.5 (R100/K7.5) and 10 mg kg?1 (R100/K10), romifidine 200 μg kg?1 with ketamine 5 (R200/K5), 7.5 (R200/K7.5) and 10 mg kg?1 (R200/K10) by IM injection. The time required to perform orotracheal intubation (IT) was measured and the ease of intubation assessed. The onset of anaesthesia (OA), duration of anaesthesia (DA) and anaesthesia recovery times (AR) were measured. Analgesia and muscle relaxation scores were recorded every 5 minutes for 60 minutes after OA. Heart rate, systolic arterial pressure, arterial haemoglobin saturation, respiratory rate, end-tidal carbon dioxide and oesophageal temperature were also measured.ResultsThe IT, OA and DA were not significantly different between the treatments. The analgesia and muscle relaxation scores were similar between all treatments at most time points. The cardiorespiratory variables were not significantly different between the treatments in most cases. The adverse effects were dose dependent and similar to those previously described for other combinations of α2-agonists and ketamine.Conclusions and clinical relevanceAnaesthesia produced by the studied combinations of romifidine and ketamine may only be reliable when conducting brief and noninvasive procedures in cats. The OA times were slower and the DA shorter than those reported for other alpha-2 agonists combined with ketamine. A dose-related increase in the intensity of the anaesthetic effects could not be demonstrated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号