首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance of white clover/perennial ryegrass mixtures under cutting   总被引:4,自引:0,他引:4  
Clover persistence in mixtures of two varieties of perennial ryegrass (Lolium perenne) with contrasting growth habits and three white clover (Trifolium repens) varieties differing in leaf sizes was evaluated at two cutting frequencies. An experiment was sown in 1991 on a clay soil. The plots received no nitrogen fertilizer. In 1992, 1993 and 1994, mixtures containing the large-leaved clover cv. Alice yielded significantly more herbage dry matter (DM) and had a higher clover content than mixtures containing cvs Gwenda and Retor. Companion grass variety did not consistently affect yield or botanical composition. Cutting at 2 t DM ha?1 resulted in slightly higher total annual yields than cutting at 1.2 t DM ha?1, but did not affect clover content. In 1992 the mixtures yielded, depending on cutting frequency and variety, 10·6–14·6 t DM ha?1 and 446–599 kg ha?1 N, whereas grass monocultures yielded only 1·2–2·0 t DM ha?1 and 25–46 kg ha?1 N. From 1992 to 1994 the annual mean total herbage yield of DM in the mixtures declined from 12·2 to 10·5 to 8·7 t ha?1, the white clover yield declined from 8·7 to 6·5 to 4·1 t ha?1 and the average clover content during the growing season declined from 71% to 61% to 46%, whereas the grass yield increased from 3·4 to 4·0 to 4·5 t ha?1. The N yield decreased from 507 to 406 to 265 kg N ha?1 and the apparent N fixation from 470 to 380 to 238 kg N ha?1. Nitrate leaching losses during the winters of 1992–93 and 1994–95 were highest under mixtures with cv. Alice, but did not exceed 10 kg N ha?1. The in vitro digestible organic matter (IVDOM) was generally higher in clover than in grass, particularly in the summer months. No differences in IVDOM were found among clover or grass varieties. The experiment will be continued to study clover persistence and the mechanisms that affect the grass/clover balance.  相似文献   

2.
The effect of defoliation interval on growth patterns of contrasting perennial ryegrass (Lolium perenne)–white clover (Trifolium repens) mixtures was studied. The dynamics of increase in leaf area, light interception and dry-matter (DM) production were measured within successive regrowth periods. No N fertilizer was applied. During 1995 six mixtures were cut eight (F1) or six times (F2) at a stubble height of 5 cm. The stubble composition was stable throughout the growing season: after harvest about 50 g DM m?2 (with a white clover proportion of 0·52) was present with a leaf area index (LAI) of 0·5 (0·38 white clover). The percentage of intercepted radiation after cutting was 20–30% and increased during 3 weeks to about 95%. The relative growth rate of leaf area and DM was higher for white clover than for perennial ryegrass, with the proportion of clover in the LAI and DM increasing during each regrowth period. Mixtures with large-leaved white clover cv. Alice had a lower initial clover content after harvest, but a more rapid increase in clover LAI and DM than mixtures with the smaller leaved cvs Gwenda or Retor. Alice had the highest total and clover LAI and DM at harvest. Cutting frequency affected the change in white clover–perennial ryegrass ratio during regrowth. This was significantly higher in mixtures with Alice than in mixtures with Gwenda, but only under less frequent cutting (F2). In spring there was a mean white clover proportion of about 0·55 in the LAI and 0·45 in the total harvested DM. In summer the white clover proportion in the LAI and DM increased to 0·70–0·75. There was a decline during autumn, especially in F2 and in the mixtures with the small-leaved white clover cv. Gwenda and the medium-leaved cv. Retor. In contrast, grass DM and LAI declined from spring to summer. The decline in clover LAI in autumn was similar in Alice and Gwenda at frequent cutting (F1), but stronger in Gwenda in F2. Retor had the lowest clover specific leaf area (SLA). The SLA values of Alice and Gwenda were similar, SLA being similar between cutting treatments. No differences were found for leaf weight ratio (LWR) among the three white clover cultivars or between the grass cultivars, and LWR was not affected by cutting treatment. Defoliation interval had limited effects on the growth pattern and leaf characteristics of perennial ryegrass–white clover mixtures.  相似文献   

3.
The aim was to study the effects of white clover cultivar and combinations with perennial ryegrass cultivars on seedling establishment in autumn‐sown swards and on winter survival of seedlings. Large‐leaved white clover cv. Alice and small‐leaved white clover cv. Gwenda, and an erect and a prostrate perennial ryegrass cultivar were sown in autumn in pure stands and as four binary grass‐clover mixtures. Mixtures of white clover cv. Huia and Aberherald with perennial ryegrass were also sown. Companion grasses had no significant impact on the establishment of white clover. The number of seedlings of white clover cv. Alice in mixtures (335 m?2) was higher than cv. Gwenda (183 m?2) and pure swards had similar white clover population densities as mixed swards. White clover cv. Huia tended to have more seedlings than Aberherald (355 and 205 m?2 respectively). No stolons were produced prior to a severe winter, because of the late sowing date. Winter survival of clover seedlings was 0·56 in mixtures and 0·69 in pure stands, irrespective of white clover or companion grass cultivar. Stolon development of white clover in autumn is often considered essential for overwintering survival and spring growth. In this study, there was considerable survival of the non‐stoloniferous tap‐rooted seedlings of all four clover cultivars despite a severe winter.  相似文献   

4.
Mixed swards of white clover–grass mixtures in highly productive environments often fail to reach the minimum recommended annual clover proportion of about 0·30. This study assessed the effect on clover content and total dry matter (DM) yield of two spring N applications (0 and 45 kg N ha?1) and two distances between drilled grass‐rows (0·18 and 0·36 m) over 3 years for mown swards of white clover–Italian ryegrass (Trifolium repens–Lolium multiflorum) in binary mixtures in northern Italy. An additional aim was to determine the advantage of association of grass–clover compared with grass and clover monocultures. On average, N fertilization of mixtures resulted in almost 9% higher total yield (P < 0·01; mean response = 18·1 kg of total DM per kg of N) but decreased the clover proportion (0·250 vs. 0·312). Wider grass‐row spacing increased clover proportion (0·327 vs. 0·234; P < 0·01) with no reduction of total DM yield. N fertilization × grass‐row spacing interaction occurred only for clover content (P < 0·01). Without N fertilization, mixtures out‐yielded clover and grass pure stands. With N fertilization, at double rate to pure grass, yields from mixtures were greater than from clover and comparable to Italian ryegrass.  相似文献   

5.
Four cultivars of perennial ryegrass (intermediate diploid cv. Talbot and tetraploid cv. Barlatra, and late diploid cv. Parcour and tetraploid cv. Petra) were each sown at 10,20 and 30 kg ha-1, all with 3 kg ha-1 of white clover cv. Donna. Herbage productivity was measured over 3 harvest years, 1982–84. under two annual rates of fertilizer N (0 and 150 kg ha-1); the 150 kg ha-1 rate was split equally between March and August applications. Fertilizer N increased total herbage DM production; the 3-year means for the 0 and 150 kg ha-1 N rates were 8·04 and 8·91 t ha-1, respectively. In successive years, total herbage responses to N (kg DM (kg N applied)-1) were 6·6, 35 and 72 (overall mean, 58). Mean white clover DM production over the 3 years was reduced from 4·48 t ha-1 at nil N to 2·82 t ha-1 at the 150 kg ha-1 rate, a fall of 37%. Grass seed rate did not influence total herbage production or white clover performance. The two intermediate perennial ryegrass cultivars had a marginal advantage in total herbage production over the two late cultivars, but white clover content and production were higher with tetraploids than diploids. It is concluded that the value of increased herbage production from strategic use of fertilizer N has to be weighed against its depressive effect on white clover performance; application of 75 kg ha ha-1 N in both spring and autumn was excessively high if maintenance of a good white clover content in the sward is an objective. There is considerable flexibility in the grass: clover seed ratio in seeds mixtures. Modern highly-productive perennial ryegrass varieties do not differ substantially in compatibility with white clover but tetraploids permit better clover performance than diploids.  相似文献   

6.
In a small-plot trial five grass varieties bromegrass cv. Grasslands Matua, perennial ryegrass CVS. Melle (diploid) and Bastion, Condesa and Meltra (tetraploid) were established as grass/white clover swards with white clover cv. Menna. Productivity was measured under 6-weekIy cutting both without N fertilizer (No) and with 100 kg N ha?1 applied in spring (N100) Evaluation was made over 2 harvest years, 1986–87. Total mean annual production of herbage dry matter (DM) in the first harvest year at No and No was 5·07 t ha?1 and 6·93 t ha?1 respectively. In year 2, corresponding values were 11·81 and 12·67 t ha?1. In year 1, Matua swards at No and N100 yielded 5·08 and 6·65 t DM ha?1 compared with 507 and 70 t DM ha?1 for the mean of the four ryegrass varieties. In year 2, corresponding values were 12·90 and 12·29 for Matua and 11·54 and 12·78 for the four ryegrasses. In year 1, the digestable organic matter in the dry matter (DOMD) of the Matua swards was lower than that of Melle, Bastion and Condesa at NO, particularly at the first cut. In year 2, differences in DOMD between treatments and varieties were not significant. The proportion of white clover was found to be higher in the No than the N100 treatment, and also higher in year 2 in most treatments. For the No treatment Matua swards had the highest proportion of white clover in year 1 (32% compared with 24% for the mean of the ryegrass varieties) but the lowest proportion in year 2 (27% compared with 60% for the ryegrasses). For the No treatment in year 1 clover production was also 43% higher, on average, from the tetraploid treatments than with Melle as the companion grass; for this comparison in year 2 the differences were not significant. It is concluded that Matua bromegrass/white clover swards receiving no N fertilizer may have a good potential under cutting management. However, the evidence from this trial is that in the second year the proportion of white clover is lower with Matua swards than with perennial ryegrass as the companion grass.  相似文献   

7.
Six red clover cultivars, three diploid—Essex, Sabtoron and Violetta—and three tetraploid— Teroba, Red Head and Hungaropoly—were sown alone and with each of three companion grasses—timothy (S48), tall fescue (S170) and perennial ryegrass (S24). The productivity and persistency of the red clover cultivars were compared over 4 years. Dry matter (DM) yield, DM digestibility and the crude protein (CP) concentration were assessed and botanical analyses conducted on herbage samples from each treatment at each of three harvests per annum. Annual fertilizer application consisted of 165 kg P and 312 kg K ha-1. Comparing clover cultivars alone Essex was significantly less productive and less persistent than the other five cultivars. Yield and persistency of the five other cultivars did not differ markedly within years with the exception that the diploids were significantly less productive than the tetraploids in the fourth year. Over all 4 years mean annual total DM and clover DM yields of the five cultivars were between 12·2 and 13·2 t ha-1 and between 9·2 (79·2% of total DM yield) and 10·2 (83·2%) t ha-1 respectively, and differences were not significant. Up to the end of the third year there was little or no advantage gained by the inclusion of a companion grass, annual total DM yields being between 11·2 and 14·2 t ha-1 for clover alone and between 10·2 and 14·2 t ha-1 for clover-grass mixtures. In the fourth year there was an overall tendency for the yield of the clover alone to be lower, between 7·2 and 12·2 t ha-1, than that of the clover-grass mixture, between 8·2 and 13·2 t ha-1, and this was more pronounced with the diploid than with the tetraploid clover cultivars. Sown with companion grasses, Essex and Hungaropoly were lower in yield and in contribution than the other cultivars over the 4 years. The influence of the companion grass on total dry matter yield showed that the contribution of timothy was low relative to that made by tall fescue and perennial ryegrass. Perennial ryegrass made the most varied contribution from year to year. Tall fescue was the most consistent contributor with all clover cultivars and at the end of 4 years both yield and clover-grass balance had not changed materially. No pronounced differences in DM digestibility were evident between treatments. Crude protein concentration of the pure clover was similar to that of the clover-timothy treatments and both would appear to be superior to either the clover-perennial ryegrass or clover-tall fescue mixtures. It is considered that red clover dominant swards are suitable for use under a cutting regime and can provide high yields of DM at a low cost for up to 4 years. Such swards are self-sufficient in N and in addition soil N accumulation can be exploited in the production of succeeding crops.  相似文献   

8.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

9.
Nitrogen (N), accumulating in stubble, stolons and roots, is an important component in N balances in perennial ryegrass–white clover swards, and the effects of cutting frequency on the biomass of above‐ and below‐harvest height were studied during two consecutive years. Total dry matter (DM) and total N production, and N2 fixation, were measured at two cutting frequencies imposed in the summers of two years either by cutting infrequently at monthly intervals to simulate mowing or by frequent cutting at weekly intervals to simulate grazing. Total DM production harvested was in the range of 3000–7000 kg DM ha?1 with lower DM production associated with the frequent cutting treatment, and it was significantly affected by the different weather conditions in the two years. The higher cutting frequency also reduced the biomass below harvest height but the different weather conditions between years had less effect on stubble and, in particular, biomass of roots. The biomass of roots of white clover was significantly lower than that of roots of perennial ryegrass and remained at a relatively constant level (200–500 kg DM ha?1) throughout the experiment, whereas the biomass of perennial ryegrass roots increased from 2400 kg DM ha?1 in the year of establishment to 10 200 kg DM ha?1 in the infrequent cutting treatment and 6650 kg DM ha?1 in the frequent cutting treatment by the end of the experiment, giving shoot:root ratios of 4·7–16·6 and 0·5–1·6 for white clover and perennial ryegrass respectively. Annual N2 fixation was in the range of 28–214 kg N ha?1, and the proportion of N fixed in stolons and roots was on average 0·28. However, as weather conditions affect the harvested DM production and the shoot:root ratio, care must be taken when estimating total N2 fixation based on an assumed or fixed shoot:root ratio.  相似文献   

10.
Agronomic data on most broad‐leaved species of grasslands are scarce. The aim of this study was to obtain novel information on herbage DM yield and forage quality for several forb species, and on species differences and seasonal patterns across harvests and in successive years. Four non‐leguminous forbs [salad burnet (Sanguisorba minor), caraway (Carum carvi), chicory (Cichorium intybus) and ribwort plantain (Plantago lanceolata)] and three leguminous forbs [yellow sweet clover (Melilotus officinalis), lucerne (Medicago sativa) and birdsfoot trefoil (Lotus corniculatus)] and a perennial ryegrass–white clover mixture were investigated in a small‐plot cutting trial in Denmark during 2009 and 2010. Plots were harvested four times per year. On average, annual herbage yield was highest for lucerne (15·4 t DM) and grass–white clover (12·5 t DM ha?1), and lowest for salad burnet (4·6 t DM ha?1) and yellow sweet clover (3·9 t DM ha?1). Ribwort plantain and lucerne had the highest concentrations of acid detergent fibre (339 and 321 g kg?1 DM respectively) and lignin (78 and 67 g kg?1 DM respectively); contents in other species were similar to grass–white clover (275 and 49 g kg?1 DM respectively). No common feature was found within the functional groups of non‐leguminous forbs and leguminous forbs, other than higher crude protein contents (198–206 g kg?1 DM) in the legumes. DM yield and fibre content were lowest in October. Digestibility declined with higher temperature and increasing fibre content. Results are discussed in terms of the potential of forbs to contribute to forage resources in farming practice.  相似文献   

11.
The hypothesis that dynamics of growth, branching of stolons and appearance of leaves are important for the persistence of white clover ( Trifolium repens ) in mixed swards was tested. The effect of cutting frequency and white clover cultivar on stolon and leaf dynamics was studied throughout the growing season in a field experiment. Mixtures of perennial ryegrass ( Lolium perenne ) and white clover cultivars with different leaf sizes, cvs. Alice, Gwenda and Retor, were evaluated for white clover persistence at two cutting frequencies. Stolon dynamics, stolon survival, leaf and node appearance rate, branching, flowering and stolon elongation rate were analysed and related to white clover content and yield.
There were clear seasonal fluctuations in stolon and leaf characteristics. Stolon elongation rate and appearance rates of nodes, leaves and branches declined in autumn. Temperature and irradiation explained a major part of the variation of stolon elongation rate and leaf appearance rate and 25% of the variation in stolon branching rate.
Significant and consistent differences in yield and botanical composition were found between mixtures. Mixtures with cv. Alice had the highest total and white clover yield and the highest white clover content, whereas mixtures with cv. Retor had the lowest yield and the lowest white clover content. Stolon elongation rate and stolon internode length were significantly higher in cv. Alice than in the other white clover cultivars, whereas cv. Retor had a significantly higher percentage of leaves with damage caused by insects and slugs than the other cultivars. Little support was found for the hypothesis that branching characteristics are a key component of competitive success in mixed pasture, as most measured branching characteristics were not associated with differences in white clover yield between cultivars and cutting regimes.  相似文献   

12.
Four‐species mixtures and pure stands of perennial ryegrass, tall fescue, white clover and red clover were grown in three‐cut and five‐cut systems at Ås, southern Norway, at a low fertilization rate (100 kg N ha?1 year?1). Over a three‐year experiment, we found strong positive effects of species diversity on annual dry‐matter yield and yield stability under both cutting frequencies. The overyielding in mixtures relative to pure stands was highest in the five‐cut system and in the second year. Among the possible pairwise species interaction effects contributing to the diversity effect, the grass–grass interaction was the strongest, being significant in both cutting systems and in all years. The grass–legume interactions were sometimes significant, but no significant legume–legume interaction could be detected. Competitive relationships between species varied from year to year and also between cutting systems. Estimations based on species identity effects and pair‐specific interactions suggested that the optimal proportions of red clover, white clover, perennial ryegrass and tall fescue in seed mixtures would have been around 0·1, 0·2, 0·4 and 0·3 in the three‐cut system, and 0·1, 0·3, 0·3 and 0·3 in the five‐cut system.  相似文献   

13.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

14.
The performance of timothy in mixtures with perennial ryegrass was assessed under a simulated intensive grazing management over two harvest years in 1974–75. Three seed rates of S23 perennial ryegrass were factorially combined with three rates of Scots timothy and compared with pure stands of each grass. All were sown with Huia white clover. When cut six times at monthly intervals and with an annual N input of 350 kg ha?1, there were no significant differences in total DM production in either year. The 2-year mean DM yield for the nine mixtures and six pure swards was 9·77 t ha?1 (range 9·34–10·16). Compared with the pure ryegrass swards, in both years the ryegrass-timothy mixtures produced earlier spring growth but were significantly lower yielding at the second cut. Over the first five cuts the proptortion of timothy in the three mixtures with 22·4 kg ha?1 ryegrass seed averaged 26% in the first year and 37% in the second. Corresponding calculated mean DM yields of timothy were 2·75 and 3·00 t ha?1. It is concluded that an early timothy variety is capable of competing with a late-heading perennial ryegrass in frequently cut swards managed to simulate intensive grazing. The strong development of timothy in the dry summer of 1975 suggests that in mixtures of late perennial ryegrass varieties, an early variety of timothy should be beneficial for its spring growth in grazed swards.  相似文献   

15.
Six dryland pastures were established at Lincoln University, Canterbury, New Zealand, in February 2002. Production and persistence of cocksfoot pastures established with subterranean, balansa, white or Caucasian clovers, and a perennial ryegrass‐white clover control and a lucerne monoculture were monitored for nine years. Total annual dry‐matter (10.0–18·5 t DM ha?1) and sown legume yields from the lucerne monoculture exceeded those from the grass‐based pastures in all but one year. The lowest lucerne yield (10 t ha?1 yr?1) occurred in Year 4, when spring snow caused ungrazed lucerne to lodge and senesce. Cocksfoot with subterranean clover was the most productive grass‐based pasture. Yields were 8·7–13·0 t DM ha?1 annually. Subterranean clover yields were 2·4–3·7 t ha?1 in six of the nine years which represented 26–32% of total annual production. In all cocksfoot‐based pastures, the contribution of sown pasture components decreased at a rate equivalent to 3·3 ± 0·05% per year (R= 0·83) and sown components accounted for 65% of total yield in Year 9. In contrast, sown components represented only 13% of total yield in the ryegrass‐white clover pastures in Year 9, and their contribution declined at 10·1 ± 0·9% per year (R= 0·94). By Year 9, 79% of the 6.6 t ha?1 produced from the ryegrass‐white clover pasture was from unsown species and 7% was dead material. For maximum production and persistence, dryland farmers on 450–780 mm yr?1 rainfall should grow lucerne or cocksfoot‐subterranean clover pastures in preference to ryegrass and white clover. Inclusion of white clover as a secondary legume component to sub clover would offer opportunities to respond to unpredictable summer rainfall after sub clover has set seed.  相似文献   

16.
The sustainability of white clover in grass/clover swards of an upland sheep system, which included silage making, was studied over 5 years for four nitrogen fertilizer rates [0 (N0), 50 (N50), 100 (N100) and 150 (N150) kg N ha?1]. A common stocking rate of 6 ewes ha?1 was used at all rates of N fertilizer with additional stocking rates at the N0 fertilizer rate of 4 ewes ha?1 and at the N150 fertilizer rate of 10 ewes ha?1. Grazed sward height was controlled, for ewes with their lambs, from spring until weaning in late summer by adjusting the proportions of the total area to be grazed in response to changes in herbage growth; surplus pasture areas were harvested for silage. Thereafter sward height was controlled on separate areas for ewes and weaned lambs. Areas of pasture continuously grazed in one year were used to make silage in the next year. For treatments N0 and N150, white clover stolon densities (s.e.m.) were 7670 (205·4) and 2296 (99·8) cm m?2, growing point densities were 4459 (148·9) and 1584 (76·0) m?2 and growing point densities per unit length of stolon were 0·71 (0·015) and 0·67 (0·026) cm?1 respectively, while grass tiller densities were 13 765 (209·1) and 18 825 (269·9) m?2 for treatments N0 and N150 respectively. White clover stolon density increased over the first year from 780 (91·7) cm m?2 and was maintained thereafter until year 5, reaching 8234 (814·3) and 2787 (570·8) cm m?2 for treatments N0 and N150 respectively. Growing point density of white clover increased on treatment N0 from 705 (123·1) m?2 to 2734 (260·7) m?2 in year 5 and it returned to the initial level on treatment N150 having peaked in the intermediate years. Stolon density of white clover was maintained when the management involved the annual interchange of continuously grazed and ensiled areas. The non‐grazing period during ensiling reduced grass tiller density during the late spring and summer, when white clover has the most competitive advantage in relation to grass. The increase in stolon length of white clover in this period appears to compensate for the loss of stolon during periods when the sward is grazed and over winter when white clover is at a competitive disadvantage in relation to grass. The implications for the management of sheep systems and the sustainability of white clover are discussed.  相似文献   

17.
In 1988 and 1989, swards of grass (G0), while clover (C0) and grass/white clover (GC0) receiving no N fertilizer, and a grass sward supplied with 420 kg N ha?1 (G420), were grazed by non-lactating sheep to maintain a sward surface height of 6 cm. Herbage organic matter (OM) intakes averaged between 1200 and 1700 g OM ewe?1 d?1. For treatments G0, C0, GC0 and G420 respectively, the ewes' live weight gain was 102, 112, 100 and 110 g d?1 and changes in body condition scores were +0·28, +0·52, +0·36 and +0·44 units season?1. However, the effect of treatment was not significant for either variable. There were similar levels of output of faecal N ewe?1 but significantly more urinary N ewe?1 was excreted on treatments C0 and G420, where the concentrations of N in herbage laminae were also higher. For example, in 1989, total daily N excreted was 39·7, 64·4, 44·0 and 63·3 g N ewe?1 for G0, C0, GC0 and G420 respectively. Taking into account the mean daily stocking rates, which were 19·4, 26·6, 27·2 and 36·5 ewe ha?1, the total faeces and urine returns over the season were 161, 358, 249 and 484 kg N ha?1 for each treatment respectively. The herbage OM intakes ewes?1 d?1 measured in September and October were similar for C0 and G420, and so the intake of herbage OM ha?1 d?1 was related to stocking rate, i. e. the estimated herbage intake ha?1 over the growing season for the white clover monoculture was 73% of that for N-fertilized grass. Excretal nitrogen returns to the pasture from grazed mono-cultures of clover were high, and similar to those from a grass sward receiving 420 kg fertilizer N ha?1. Consequently potential losses of N to the environment are high under these management systems.  相似文献   

18.
The effects of continuous stocking by sheep at sward surface heights (SSH) of 3, 5, 7 and 9 cm in grass/clover (GC) and nitrogen-fertilized grass (GN) swards were examined in relation to herbage mass and quality, clover content, tiller density and rates of herbage production and senescence in two periods in each of three grazing seasons (1987-89). The GN swards received a total of 300 kg N ha?1 each year in six equal dressings from March; GC swards received a single dressing of 50 kg N ha?1 in March each year. Herbage mass measured from ground level increased linearly with SSH with overall mean herbage masses of 0·89, 1·38, 1·78 and 2·12 t OM ha?1 (s.e.m.0·024, P < 0·001) at SSH of 3, 5, 7 and 9 cm respectively. GN and GC swards had mean herbage masses of 1·58 and 1·51 t OM ha?1 (s.e.m. 0·051, NS) respectively. Mean N content of herbage on GN swards was greater than that on GC swards and declined with increasing SSH. Crude, fibre (CF) content of herbage was similar for both sward types and increased with increasing SSH. Clover content of GC swards remained low throughout the experiment, ranging from 0·002 to 0·074 of herbage mass. However, from tissue turnover rates it was estimated that its contribution to herbage production was in the range of 0·049–0·219 of net herbage growth. Total growth increased with increasing SSH in both sward types, with maximum growth rates in GN swards of 143 and 130 kg DM ha?1 d?1 and in GC swards of 88·2 and 85·4 kg DM ha?1 d?1 in Periods 1 (up to early July) and 2 (after July) respectively. Senescence rates ranged between 13·3 and 50·1 kg DM ha?1 d?1 and tended to be higher in Period 2 than in Period 1. Net production increased with increasing SSH in Period 1, while in Period 2 net production declined at SSH above 6·5 cm. The increased net herbage production in taller swards was not associated with greater utilized metabolizable energy production at sward heights above 5 cm.  相似文献   

19.
Seven forage types (diploid and tetraploid perennial ryegrass, Italian ryegrass and hybrid ryegrass, a low‐input mixture of perennial ryegrass, cocksfoot, timothy and meadow fescue, a mixture of perennial ryegrass and white clover, and monoculture of red clover) were sown in late July 2004. Each received one of four rates of dairy cattle slurry in three annual applications by trailing shoe, which supplied average nitrogen (N) inputs of 0·0, 114·9, 204·8 and 301·2 kg N ha?1 annum?1. Treatments were cut either three or four times annually over four years. Average dry‐matter yield (DM) response to slurry N was 15·6 kg DM kg?1 N. Lowest recovery of slurry N was in the second application each year (after first cut). The data suggest that slurry applied to Italian ryegrass, and also to swards containing legumes on soils with high phosphorus content, will produce a lower DM response to slurry N and result in a lower slurry N recovery than on swards of perennial ryegrass or cocksfoot‐dominant low‐input mixtures. Apparent recovery of slurry N was low at the second cut, especially when first‐cut yields had been high. To maximize slurry N recovery, application to regrowths with potentially slow rates of growth or high legume content should be avoided.  相似文献   

20.
In grass–legume swards, biologically fixed nitrogen (N) from the legume can support the N requirements of the grass, but legume N fixation is suppressed by additional fertilizer N application. This study sought to identify a fertilizer N application rate that maximizes herbage and N yields, N fixation and apparent N transfer from white clover to companion grasses under intensive grazing at a site with high soil‐N status. During a 3‐year period (2011–2013), swards of perennial ryegrass and of perennial ryegrass–white clover, receiving up to 240 kg N ha?1 year?1, were compared using isotope dilution and N‐difference methods. The presence of white clover increased herbage and N yields by 12–44% and 26–72%, respectively. Applications of N fertilizer reduced sward white clover content, but the effect was less at below 120 kg N ha?1. The proportion of N derived from the atmospheric N fixation was 25–70%. Nitrogen fixation ranged from 25 to 142 kg N ha?1 measured using the isotope dilution method in 2012 and from 52 to 291 kg N ha?1 using the N‐difference method across all years. Fertilizer N application reduced the percentage and yield of fixed N. Transfer of N from white clover to grass was not confirmed, but there was an increased N content in grass and soil‐N levels. Under intensive grazing, the maximum applied N rate that optimized herbage and N yields with minimal effect on white clover content and fixation rates was 60–120 kg N ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号