首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zinc movement was studied in relation to moisture regime, element source, and method of application in soil columns constructed from samples of surface layers of Begu loamy sand and Gurgaon sandy loam. Maximum movement was only 10 mm laterally and 40 mm downward. The amount of zinc and the distance moved were greatest under the wettest regime. Movement was also greater in loamy sand than sandy loam columns, with Zn-EDTA rather than sulphate as the source, and when the amount of zinc was greater for a given volume of soil material.The effect of urea, monocalcium phosphate, calcium carbonate, and farmyard manure on the movement of zinc was determined at one moisture level in columns constructed from samples of surface layers of Begu loamy sand and Thana loam. The movement of zinc within the soil columns was reduced by all four treatments.  相似文献   

2.
The sorption and desorption capacities of two soils (a loamy soddy-podzolic soil and a sandy clay chernozem) were analyzed. Both the entire soils and their particle-size fractions were studied. Samples were taken from the soils of long-term field experiments with fertilizers. A 0.01 M CaCl2 solution was used as the extractant. The soil fractions <10 ??m were found to have the maximum capacities for sorption-desorption of potassium. The soil fractions <0.2 ??m were the most enriched with potassium. The use of kinetic methods of analysis allowed assessing the contributions of the particle-size fractions to the potassium status of soils with different degrees of fertilization. It was noted that different fertilizing systems had no effect on the rates of potassium desorption from the colloidal fraction, while appreciable differences among the different treatments were observed for the fractions of 0.2?C1.0 and 1?C10 ??m.  相似文献   

3.
Potassium uptake efficiency of safflower and sunflower was studied under semi-controlled conditions in loamy and sandy soils. Both species performed better in loamy soil. Safflower had higher agronomic efficiency and higher relative root length under suboptimal K supply. Safflower had higher specific root density and less root radius at all K levels. Safflower had higher relative root-shoot ratio under suboptimal K in loamy soil. Both species had similar K-influx at low and optimal K in loamy soil, while sunflower had higher influx under suboptimal and optimal supplies in sandy soil. Safflower had higher shoot demand in both soils under suboptimal and optimal K. Both species depleted similar amounts of soil solution-K under suboptimal K in sandy soil, while sunflower was more efficient under suboptimal levels in loamy soils. Sunflower depleted more extractable-K under both suboptimal and optimal K. Safflower could be considered K-uptake efficient crop.  相似文献   

4.
The efficacy of nitrification inhibitors depends on soil properties and environmental conditions. The nitrification inhibitor 3.4-dimethylpyrazole phosphate (DMPP) was investigated in a sandy loam and a loamy soil to study its effectiveness as influenced by inhibitor concentration, application form, and soil matric potential. DMPP was applied with concentrations up to 34.6 mg DMPP kg^-1 soil as solution or as ammonium-sulfate/ammonium-nitrate granules formulated with DMPP. DMPP inhibited the oxidation of ammonium in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. When applied as solution, increasing DMPP concentrations up to 7 mg DMPP kg^-1 soil had no influence on the inhibition. The effectiveness of DMPP formulated as fertilizer granules was superior to the liquid application of DMPP and NH4^+, particularly in the loamy soil. Without DMPP, a decline in soil matric potential down to -600 kPa decreased nitrification in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. DMPP was most effective in the sandy loam particularly under conditions of higher soil moisture, i.e., under conditions favorable for nitrate leaching.  相似文献   

5.
The contributions of root and microbial respiration to the total emission of CO2 from the surface of gray forest and soddy-podzolic soils were compared under laboratory and field conditions for the purpose of optimizing the field version of the substrate-induced respiration method. The magnification coefficients of respiration upon the addition of saccharose (k mic) were first determined under conditions maximally similar to the natural conditions. For this purpose, soil cleared from roots was put into nylon nets with a mesh size of 40 μm to prevent the penetration of roots into the nets. The nets with soil were left in the field for 7–10 days for the compaction of soil and the stabilization of microbial activity under natural conditions. Then, the values of k mic were determined in the root-free soil under field conditions or in the laboratory at the same temperature and water content. The contribution of root respiration as determined by the laboratory version of the substrate-induced respiration method (7–36%) was lower compared to two field versions of the method (27–60%). Root respiration varied in the range of 24–60% of the total CO2 emission from the soil surface in meadow ecosystems and in the range of 7–56% in forest ecosystems depending on the method and soil type.  相似文献   

6.
The soil structure of Luvisols and Podzols under forest and arable land In three loamy Luvisols from boulder marl and three sandy Podzols from glacial sand under forest, conventional and ecological farming the soil structure was investigated. The morphology, the cellulolytic activity, the aggregate stability and the soil resistance were investigated in spring and fall over two years. The aggregate stability was determined using a modified wet sieving technique and the soil resistance in the field using a simple falling cone probe. The effects of agricultural management are documented clearly. Annual changes are not uniform and not always significant. Aggregate stability and soil resistance are not decisive on actual erosion. The negative effect of low aggregate stability on erosion, caused by coarse soil texture, is reduced by agricultural management with permanent soil cover and intensive rooting.  相似文献   

7.
Summary Soil respiration was investigated in three loamy Orthic Luvisols (two arable, one forest soil), three sandy Haplic Podzols (also two arable, one forest soil) with a modified intersite method according to Lundegardh (1924). The method allows characterization of the CO2-flux from the soil and interpretation of the different levels with regard to temperature, nutrient and air supply. The method is sensitive to tillage and fertilization effects. In the two arable Luvisols the mean cumulative respiration rate was not uniform compared with the forest soil; in one case it was much higher and in another much lower. CO2 evolution in the Podzol under spruce was much lower than in the two arable Podzols. In the sandy Podzols 5 replicate measurements gave adequate results, with an error probability of 10%, but in the loamy Luvisols it was necessary to use 10 replicates to specify the same degree of difference. If soil respiration is very high, immediately after fertilization with cattle slurry or dung on arable land, or after litterfall in a deciduous forest, more replicates are necessary.  相似文献   

8.
A greenhouse experiment (5 × 2 × 2 factorial arranged in randomized-complete-design with three replicates) was conducted to assess the combined effects of nickel (Ni) and drought stress on growth and yield parameters of canola (Brassica napus L. var. Talaye) grown on two calcareous soils of loamy and sandy clay textures. Treatments consisted of five Ni levels (0, 0.05, 0.1, 0.5 and 1 mg Ni kg?1 soil) and two levels of water status 100% and 60% field capacity (FC and 0.6FC, respectively). Growth parameters and yield components of plants decreased at drought-stress conditions. Almost all of the studied growth/yield parameters of canola grown on loamy soil were significantly more than those of the sandy clay soil, probably due to the increased capability of loamy soil for supplying the plant water/nutrient requirements. Nickel could positively affect some of the mean growth and yield parameters (e.g., grain yield) over both of the water status conditions. Nevertheless, some of the traits not only increased by Ni fertilization but also decreased compared to that of the control. The positive responses of canola was observed with higher amounts of applied Ni in the sandy clay soil than in loamy soil, e.g., the maximum grain yields of canola grown on loamy and sandy clay soils were obtained with applications of 0.5 and 1 mg Ni kg?1, respectively. Generally, results demonstrated that Ni could not mitigate the negative effects of drought stress on canola growth or yield components.  相似文献   

9.
This paper covers the specifics of the temperature regime in reclaimed tundra soils under a sown perennial herb meadow and a restored (secondary) ecosystem as compared to the small-shrub yernik (birch)-willow-moss and shrub yernik-willow-moss tundra types. The taxonomic position of the anthropogenic soils and those of the secondary (restored) biogeocenosis is discussed as related to the transformation or regeneration of the biotic and thermal components of the biogeocenosis. The soil development causes profound changes in the freezing-thawing regime, which gives grounds to distinguish the developed soils as an individual soil type.  相似文献   

10.
A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present cxperiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy" soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.  相似文献   

11.
The physicochemical properties, enzymatic activity, number and biomass of soil microorganisms was determined by direct microscopic methods in the anthropogenically changed loamy sandy-loamy soddy-pale-podzolic soils under forest parks (the city of Mogilev) with the predominance of meadow-weed plants in the ground cover. The urban environment had a more toxic influence on the biological activity of the soils than recreation. A more intense transformation of the litter substrate and accumulation of biogenic elements was revealed in the old-plowed sandy loamy soils under the urban coniferous-deciduous plantations as compared to these processes in the soils of the recreational pine forests in the vicinity of Mogilev.  相似文献   

12.
The contributions of root and microbial respiration to the CO2 emission from the surface of gray forest and soddy-podzolic soils under meadow and forest vegetation were determined in field and laboratory experiments. In the field, a new modification of the substrate-induced respiration (SIR) method was applied. According to this method, the contribution of root respiration was estimated at 41–50% for meadow cenoses and 33% for forest cenoses; similar values were obtained in the course of separate incubation of roots and soil in laboratory (42–57% and 29–32%, respectively) and with the use of the laboratory version of the SIR method (35–40% and 21–31%, respectively). The analysis of difference between the values of root respiration and microbial respiration obtained by the field and laboratory methods for the same experimental plots and the comparison of advantages and disadvantages of these methods made it possible to outline the ways for the further improvement of the field version of the SIR method.  相似文献   

13.
Little-discussed aspects of mathematical models of migration, which contribute to better understanding of soil processes, were considered. These are the effect of the sorption isotherm parameters and sorption kinetics on the complexity of the migration models, the potentially great contribution of the diffusion of adsorbed ions to the general migration in the soil, the probability of an anomalously high diffusion flux through the soil under high sorption conditions, and the possibility for the nontrivial assessment of the exchangeable and mobile forms of substances in the soil from the migration parameters. The migration analysis features under field conditions and related additional uncertainties compared to the laboratory experiments were discussed, as well as new opportunities for the control of the technogenic contamination of the environment.  相似文献   

14.
Summary In the Netherlands, the dung beetleTyphaeus typhoeus (Col., Geotrupidae) is confined to sandy and loamy sandy soils. Experiments were carried out in the laboratory and in the field to ascertain the effects of soil bulk density and soil moisture on various aspects of the reproductive behaviour and development of this dung beetle. Some of the results were validated under natural field conditions. The nesting burrows were shown not to penetrate beyond the upper level of the soil moisture saturation zone. The depth of the burrows was not influenced by the bulk density in moist and free-drained sandy soils. Lower bulk densities of the soil were shown to result in fewer dung sausages being made, even when sufficient dung was availabe to provide for the larvae. This phenomenon was attributed to a behavioural response from the dung beetles. The critical bulk density in the field appeared to be approximately 1.40 × 103 kg/m3. The survival rate of eggs and larvae was shown to be adversely affected by conditions of high soil moisture (> 20% by volume) at the depths where the larvae develop. Evidence is given for a low survival rate of larvae at conditions of low soil moisture (pF > 2.7) at these depths. The impact of certain other soil factors is discussed.Communication no. 280 of the Biological Station, Wijster, The Netherlands  相似文献   

15.
Sorption of sulfamethazine (SMN) and sulfathiazole (STZ) was investigated in three soils, a North Carolina loamy sand, an Iowa sandy loam, and a Missouri loam, under various pH conditions. A significant increase in the sorption coefficient (KD) was observed in all three soils, as the sulfonamides converted from an anionic form at higher pH to a neutral/cationic form at lower pH. Above pH 7.5, sulfonamides exist primarily in anionic form and have higher aqueous solubility and no cationic character, thereby consequently leading to lower sorption to soils. The effect of speciation on sorption is not the same for all sulfonamides; it is a function of the pH of the soil and the pKa of the sulfonamides. The results indicate that, for the soils under investigation, SMN has comparatively lower KD values than STZ. The pH-dependent sorption of sulfonamides was observed to be consistent in all three soils investigated. The KD values for each speciated form-cationic, neutral, and anionic-were calculated using an empirical model in which the species-specific sorption coefficients (KD0, KD1, and KD2) were weighted with their respective fractions present at any given pH.  相似文献   

16.
Because of the focus on renewable energy, new biogas digesters are being built with the consequence of an increased production of anaerobic digestates (AD) as a by‐product. Although they can be used as organic fertilizer on arable fields, negative impacts of these digestates also may occur. Therefore, it was the aim of this laboratory study to investigate the effect of a normally applied volume of 30 m3 ha?1 of anaerobic digestates derived from a ground input substrate of maize (Zea mays L.) , sugar beet (Beta vulgaris L.), and wheat (Triticum aestivum L.) in different ratios (100 /80 / 20%) on the properties of two soils. The soils, which were homogenized (sieved to ≤ 2 mm) and placed in columns with a defined bulk density of 1.45 g cm?3, were a Cambic Luvisol (sandy loam) derived from glacial till and a Podzol (sandy sand) derived from glazial outwash. Physicochemical parameters [pH, electrical conductivity (EC)] and the wetting behavior of the soils were analyzed by measuring the contact angle (CA) by using the Wilhelmy–Plate‐Method (WPM) and the Repellency Index (RI) from the sorptivity of water and ethanol. To determine the risk of soil dispersion as a consequence of digestate amendment, the amount of readily dispersible clay (RDC) was determined by detecting the turbidity of a soil suspension. The application of 30 m3 ha?1 of AD decreased the wettability of the sandy sand as compared to the untreated soil, while the wettability of the loamy sand remained unaffected by the digestate amendment. The amount of RDC was higher in the loamy sand compared to the sandy sand, but the AD‐amended soil did not exhibit a significant change in dispersibility. While the loamy soil exhibited acidification of the soil after digestate application, the sandy soil showed an alkalinization of soil columns. Overall, the soil texture was identified to be a main factor controlling the effect of the digestates on soil properties. The results of this lab study showed that this study can be used as a first approach for the quantification of digestate amendment under practical conditions.  相似文献   

17.
In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot‐water‐ and sodium‐pyrophosphate‐extractable organic matter was analysed by Fourier transform infrared (FT‐IR) spectroscopy. For the sandy forest soil, the FT‐IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740–1710 cm?1 and 1640–1600 cm?1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot‐water‐soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water‐soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors.  相似文献   

18.
The fate of 15N-labeled potassium nitrate (8.5% 15N excess) was determined in 3-year-old Valencia orange trees grown in 1-m3 containers filled with different textured soils (sandy and loamy). The trees were fertilized either in spring (24 March) or summer (24 July). Spring fertilized trees gave higher fruit yields in sandy than in loamy soils, which exceeded summer fertilized trees in both cases. Summer fertilized trees had greater leaf biomass than spring fertilized trees. Fibrous root weight was 1.9-fold higher in sandy than in loamy soil. At the end of the cycle, tree N recovery from spring application was 45.7% for sandy and 37.7% for loamy soil; from summer fertilization, N recovery was 58.9% and 51.5% for sandy and loamy soils, respectively. The 15N recovered in the inorganic soil fraction (0?C90?cm) was higher for loamy (1.3%) than for sandy soil (0.4%). Fertilizer N immobilized in the organic matter was lower in sandy (2.5%) than in loamy soil (6.0%). Potential nitrate leaching from fertilizer (15NO 3 ? ?CN in the 90?C110-cm soil layer plus 15NO 3 ? ?CN in drainage water) was 34.8% higher in sandy than in loamy soil. The low N levels in sandy soil resulted from both higher NO 3 ? ?CN leaching losses and higher N uptake of plants grown in the former. The great root mass and higher soil temperatures could account for raised plant N uptake in sandy soil and in summer, respectively.  相似文献   

19.
Water repellency can be a significant factor in soil physical behaviour, but little is known about the depth dependence of the contact angle of field soils. We investigated contact angles and wetting properties as a function of depth for a wide range of agricultural and forest soils in Germany. The agricultural soils ranged from silty to sandy texture (six profiles), and the forest soils ranged from sandy to loamy texture (eight profiles). Contact angles (CA) were measured with the Wilhelmy plate method (WPM). In most of the soils, advancing WPM contact angles were considerably greater than 0° and they varied irregularly with depth. In general, sandy soils had larger WPM contact angles than silty soils. From the relation of the contact angle with texture and pH the quality of soil organic matter (SOM) was considered as more important for the wetting properties than the total amount of soil organic carbon (SOC). Finally, it was found that for soils with intermediate sand contents either under agricultural or forest use, the kind of land use seemed not to influence CA. Coarse‐textured sandy soils that were used only as forest sites were more hydrophobic than silty soils which were exclusively used as agricultural soils. We conclude that a coarse texture favours, in combination with other factors (mainly pH), hydrophobic SOM.  相似文献   

20.
A functional relationship for the nitrogen mineralization of an arable soil under field conditions In order to characterize the nitrogen mineralization of a poorly drained, loess-derived field soil (Aeric Fragiaqualf, loamy, mesic) a laboratory incubation experiment was carried out. The measured mineralization rate was expressed as a function of soil temperature and soil water content. At the same time, a field incubation experiment with buried soil samples (so-called Runge samples) was conducted. It was found that the laboratory incubation method overestimated the mineralization rate as compared with the field method. Accordingly, the laboratory data were adjusted. Additionally, it was found that management practices (fertilizer application, harvest, soil cultivation) influenced the course and the extent of the nitrogen mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号