首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】MYB转录因子是调控植物木质素合成和次生壁形成的重要转录因子之一。本文分离克隆到一个与拟南芥AtMYB20高度同源的橡胶树MYB转录因子基因HbMYB20,并在拟南芥中对其功能进行研究,以期了解其在橡胶树木质素合成和次生壁发育的分子调控中的作用,为橡胶树木材形成的分子调控机制研究及其遗传改良奠定基础。【方法】采用 blast分析从树皮转录组中筛选出与拟南芥 AtMYB20序列同一性较高的橡胶树 MYB 基因HbMYB20;设计 ORF区特异性引物,以树皮 cDNA 为模板进行扩增得到该目的基因 cDNA 序列。实时荧光定量PCR检测该基因在橡胶树叶片、胶乳、茎干以及木质部与韧皮部的相对表达量。构建 HbMYB20过表达植物载体,使用农杆菌蘸花法转化拟南芥,获得该基因过表达转基因株系。采用乙酰溴法和间苯三酚染色法,分析转基因、野生型拟南芥茎的木质素含量以及木质素在拟南芥茎基部横截面中的分布。对转基因、野生型拟南芥茎基部横截面切片进行甲苯胺蓝染色,并测量分析导管、木质纤维和维管束间纤维细胞的细胞壁厚度。最后,采用实时荧光定量PCR分析转基因及野生型拟南芥木质素和纤维素合成相关酶基因的表达。【结果】克隆得到1个橡胶树 MYB 转录因子基因 HbMYB20,该基因开放阅读框( ORF)为927 bp,编码309aa 的蛋白,氨基酸序列分析显示,HbMYB20与AtMYB20/43和 AtMYB85/42同源性较高,属 R2R3MYB转录因子 G8亚组成员。表达分析显示 HbMYB20在橡胶树茎干和木质部中高表达,胶乳中表达最低。对 HbMYB20过表达拟南芥分析显示,该基因在3个转基因株系中均表达;相对野生型拟南芥,转 HbMYB20拟南芥植株生长抑制,木质部和维管束间纤维的木质素染色面积较少、染色程度变浅,茎的木质素含量和木质纤维、导管及维管束间纤维的细胞壁厚度均显著低于野生型;同时转基因株系中木质素合成关键酶基因4CL1和 CCoAOMT的表达量以及纤维素合成关键酶基因 CesA8的表达显著下调。【结论】橡胶树 MYB转录因子 G8亚组成员 HbMYB20,在茎和木质细胞中高表达。拟南芥中过表达 HbMYB20导致转基因植株的矮小,细胞壁变薄,阻碍木质部中木质素的合成和积累,同时木质素和纤维素合成相关酶基因的表达显著下降。由此推测 HbMYB20对拟南芥的木质素和纤维素合成都具有负调控作用,可能是1个橡胶树次生壁发育的负调控因子。  相似文献   

2.
通过基因工程技术培养出木质素含量低、纤维素含量高和糖转化效率高以及优质的木材,对于将其定向应用于制浆造纸、生物炼制、木质建筑及装饰材料方面具有重要的研究意义。文章详细阐明了木质素和纤维素基因调控技术对转基因林木生长表型、细胞壁化学组分含量及其微区分布、组织细胞形态及细胞壁超微构造影响的研究进展,并对转基因林木今后的重点发展方向进行了展望,以期为我国定向培育优质速生人工林提供理论依据。  相似文献   

3.
采用改良的CTAB法提取南林95杨的基因组DNA,经PCR扩增得到肉桂酰辅酶A还原酶CCR基因的第4个外显子部分序列,通过中间载体pUCCRNAi,构建含正反向干涉片段的pBll21表达载体,导入农杆菌LBA4404。利用叶盘法侵染南林95杨,获得3株转基因植株,经分子鉴定证实干涉片段已导入南林95杨。测定Klason木质素及综纤维素含量的结果显示:转基因植株Klason木质素含量与对照相比平均降低了9.86%,综纤维素含量与对照相比平均增加了3.17%,纤维长宽比明显增加,均表明转基因植株更有利于造纸。  相似文献   

4.
RNA干涉培育低木质素杨树   总被引:2,自引:0,他引:2  
采用改良的CTAB法提取南林95杨的基因组DNA,经PCR扩增得到肉桂酰辅酶A还原酶CCR基因的第4个外显子部分序列,通过中间载体pUCCRNAi,构建含正反向干涉片段的pBI121表达载体,导入农杆菌LBA4404。利用叶盘法侵染南林95杨,获得3株转基因植株,经分子鉴定证实干涉片段已导入南林95杨。测定Klason木质素及综纤维素含量的结果显示:转基因植株Klason木质素含量与对照相比平均降低了9.86%,综纤维素含量与对照相比平均增加了3.17%,纤维长宽比明显增加,均表明转基因植株更有利于造纸。  相似文献   

5.
杞柳的化学成分及其木质素微区分布的研究   总被引:1,自引:0,他引:1  
采用传统的化学成分测试方法和激光扫描共聚焦显微镜技术(CLSM)研究了杞柳的化学成分以及木质素在各细胞及纤维细胞各微区的分布,分析了株高不同部位化学成分的变异规律。结果表明:杞柳的1%Na OH抽提物、热水抽提物、冷水抽提物、苯醇抽提物、综纤维素、α-纤维素、酸不溶木质素、酸溶木质素、多戊糖和灰分分别为32.11%、10.85%、7.11%、3.27%、70.46%、35.50%、20.18%、4.50%、15.51%、0.90%;在不同部位,除了α-纤维素和多戊糖含量差异不显著,其余各指标均差异显著;木质素在各细胞及纤维细胞各微区分布不均一,导管细胞壁木质素浓度高于木纤维和射线,纤维细胞角隅处木质素浓度高于次生壁和复合胞间层。  相似文献   

6.
对12个月的茶秆竹进行细胞壁解剖特性和木质素微区分布的研究,运用光学显微镜、激光共聚焦扫描显微镜以及颜色反应鉴定木质素的存在,利用组织化学染色方法及其可见光显微分光光度计半定量测定竹材纤维、薄壁组织和导管细胞壁各微区的木质素含量。12个月时细胞壁全部木质化,木质素在各组织中均有分布,其含量因组织类型及其细胞壁微区不同而有差异。从组织化学染色及可见光吸收光谱图的吸收峰值,说明细胞壁各微区中存在愈创木基(G)和紫丁香基(S)2种木质素组成单元。竹壁径向和纤维帽不同位置的木质素含量未有明显的规律性变化。纤维次生壁具有薄厚层交替的多层结构,薄层木质素含量大于厚层。  相似文献   

7.
随着我国木材产量难以满足日益增长的木材需求,人工林在缓解国内木材市场供需矛盾上发挥着越来越重要的作用。我国人工林面积居世界首位,但木材性质较差,限制了其应用范围,培育性质优良的人工林木材具有重要意义。利用基因工程技术可以从源头有效提高人工林木材的性质,进而提高木材质量,在有限林地上实现资源的高效利用。本文综述基因工程技术对人工林木材化学、构造及其物理力学性质的影响,以期为人工林木材性质基因工程改良的研究和应用提供参考。基因工程改良对木材化学组成的影响主要体现在木质素含量和木质素单体比例、纤维素和半纤维素及其他化学成分的变化上,选择不同的目的基因将对木材化学组成产生不同的影响,其中利用基因工程降低木材木质素含量的研究最为活跃。基因工程改良对木材构造的影响主要体现在细胞形态和微纤丝取向的变化上,现有研究表明通过基因工程改良能有效提高人工林木材纤维质量,进而提高纸浆质量,而且基因工程改良还会对木材微纤丝角产生影响;木材细胞形态和微纤丝角的改变会引起材性的变化,为通过基因定向改变木材细胞形态或微纤丝角,进而达到人工林木材材性改良的目的提供了思路。基因工程改良对木材的物理力学性质也具有显著影响,已有研究发现多种目的基因可对木材密度、干缩湿胀率和木材强度等产生影响。目前,有关人工林木材性质基因工程改良的研究仍处于初级阶段,尚有一些问题需要进一步解决,建议今后的研究重点可从以下3方面展开:1)转基因植株细胞壁的物质形成受到精细的时空调节,因此应考虑时间和环境因素对基因工程改良木材所造成的影响,深入研究基因工程改良木材优良性质的稳定性,探索有利于基因稳定表达的培育环境和措施;2)虽然基因工程改良会对木材化学、构造及其物理力学性质等造成影响,但是木材性质经同一种基因改良后变化程度有差异,因此有必要寻找能稳定遗传的基因并提高基因表达水平的方法;3)基因工程改良木材基础性质的研究还远远不足,需要重点研究基因工程改良人工林木材化学组成、构造及其物理力学性质等方面的变化,寻找能稳定改善木材性质的基因,建立一个完整可靠的基础数据库。  相似文献   

8.
【目的】研究竹纤维单细胞中重要化学组分的分布,揭示竹纤维细胞壁中化学组分的分布规律。【方法】以6年生毛竹为研究对象,取竹壁中部竹材,制成超薄切片,利用高分辨率激光共聚焦拉曼显微镜对纤维细胞进行原位光谱采集,通过光谱成像技术分析毛竹纤维单细胞中重要化学组分的分布。【结果】S型木质素和G型木质素广泛分布于细胞壁各壁层中,而H型木质素则主要分布在细胞外缘。羟基肉桂酸的分布与H型木质素类似,也主要存在于细胞外缘的壁层中。纤维素在细胞壁宽壁层中的分布相对稳定,且比窄壁层具有更高的分布密度;从细胞外围向细胞内部,木质素的分布密度总体呈下降趋势,在复合胞间层、细胞腔周围以及各壁层之间的交界处还具有相对较高的分布密度,形成局部聚集分布。【结论】竹纤维细胞壁径向方向具有不同的化学组成,纤维素、木质素以及羟基肉桂酸在不同壁层之间具有不同的分布密度。  相似文献   

9.
木材流变学主要研究木材在应力/应变、温度、湿度等条件下与时间因素有关的变形规律和机制,以研究木材的黏弹性为主要内容。木材发生形变时,其实质承载结构是细胞壁,细胞壁的壁层构造和化学组分对其黏弹行为有显著影响,深入了解木材细胞壁结构及黏弹性质对于实现木纤维/塑料复合材料和制浆造纸工艺的高效设计具有重要意义。本文围绕木材细胞壁S2层超微构造和细胞壁化学组分2个方面对细胞壁结构进行阐述,归纳S2层微纤丝角和化学组分对木材细胞壁黏弹行为的影响规律,并从分子水平上解释其作用机制,总结动态力学分析技术和纳米压痕技术在研究木材细胞壁结构与黏弹性之间关系上的具体应用。木材细胞壁的黏弹性受壁层构造的复杂性、化学组分的多样性和外部环境条件等多种因素影响,并且各因素之间存在一定的交互作用。因此,建议今后从以下几个方面开展研究:1)解明木材细胞生长过程中的微纤丝取向、纤维素结晶区与非结晶区比例的分子控制机制;2)阐明木材细胞壁次生壁Matrix的空间组织排列方式、纤维素聚合体与Matrix之间相互作用的力学行为表达;3)揭示木材细胞壁中半纤维素的含量、种类以及木质素类型对细胞壁黏弹性的影响机制;同时将环境外因(温度、湿度)和载荷类型(静态/动态、拉/压/弯)纳入研究体系,系统揭示"湿-热-力"协同作用下木材细胞壁的机械吸湿蠕变行为规律和响应机制;4)联合运用多种测试技术手段,并引入相关学科的研究方法及理论模型,如有限元法及复合材料的研究方法,构建可以解释木材细胞壁黏弹特性的物理和数学模型。  相似文献   

10.
对12个月的毛竹和茶秆竹进行了木质素微区分布的研究,实验运用光学显微镜和激光共聚焦扫描显微镜鉴定了木质素的存在,并且利用组织化学染色方法及其可见光显微分光光度计半定量测定竹材纤维?薄壁组织和导管的细胞壁各微区木质素含量。毛竹竹茎各组织细胞壁各微区的木质素含量均大于茶秆竹相应部位的。木质素在各组织中均有分布,其含量因组织类型及其细胞壁不同微区而有差异,其结构中存在愈创木基(G)和紫丁香基(S)两种木质素组成单元。竹壁径向和纤维帽不同位置的木质素含量未有明显的规律性变化。纤维次生壁具有薄厚层交替的多层结构,薄层的木质素含量大于厚层的。  相似文献   

11.
增加林木的纤维素生产和转基因树的生长(英文)   总被引:6,自引:0,他引:6  
纤维素是植物组成中的重要多聚物。纤维素也是重要的工业原料和可再生的能源物质。利用转基因技术可以降低林木中木质素含量并增加纤维素含量。木质素合成酶基因4-CL是一个重要的和木材再生有关的基因。在我们的研究中,将利用反义表达方法降低木质素含量,增加纤维素含量。研究包括:D4-CL基因的分离;转基因植物的生产;纤维素和木质素含量分析;中试。参69。  相似文献   

12.
在木质纤维素的生物降解和转化过程中,木质纤维素的复杂结构和木质素组分限制了碳水化合物的高效酶水解。过氧化氢预处理可以通过破坏木质纤维素的物理化学结构并氧化降解部分木质素,从而改善原料的酶水解效率。过氧化氢预处理主要有过氧化氢-酸、过氧化氢-碱、活化过氧化氢这3类预处理方法。笔者主要归纳了不同预处理过程中的木质素降解机理,总结了过氧化氢预处理强化木质纤维原料酶水解的效果,探讨了预处理对木质纤维原料降解产物的影响,评价了各类过氧化氢预处理的可行性和优缺点。最后,根据过氧化氢预处理的特点分析了过氧化氢预处理的研究策略,展望了过氧化氢预处理的发展趋势。从安全性和经济可行性的角度来看,低试剂用量、低温和低压的预处理条件是未来过氧化氢预处理的主要研究方向。  相似文献   

13.
对1年生毛白杨人工接种后,毛白杨与瘿瘤木纤维和导管分子长、宽、腔径、长宽比、壁厚与化学组成变异进行测定与分析.结果表明:纤维各解剖参数(壁厚除外)在处理组接种处明显下降,上方木质部和接种处导管变小,下方受其影响较小.方差分析表明:处理组毛白杨木质部木纤维及导管分子差异极显著;对照组木质部木纤维和导管分子无明显变化;瘿瘤之间木纤维及导管分子的长、宽均差异显著,说明瘿瘤细胞分裂异常;与木质部相比,瘿瘤中木纤维和导管分子明显减小;毛白杨木质部和瘿瘤之间木纤维及导管分子差异达显著和极显著.处理组毛白杨接种处冷水抽出物、热水抽出物、1%NaOH抽出物含量增加,纤维素含量降低,木质素含量最高.方差分析表明:处理组毛白杨化学组成变异极显著,对照组毛白杨各接种部位和瘿瘤之间化学组成均变化平稳.瘿瘤木质部中冷水抽出物、热水抽出物、1%NaOH抽出物含量分别比提高了2.6~4.3,1.5~2.6,1.1~1.8倍,而纤维素含量下降了51%~99%,处理组毛白杨接种处木质素含量是瘿瘤的2.7倍,和其他接种部位相比,瘿瘤木质素含量略高.  相似文献   

14.
随着人类对环境污染和资源危机等问题认识的不断深入,开发利用廉价、可再生、可降解的天然高分子材料日益受到重视。木质素是总量仅次于纤维素的第二大天然高分子材料,是自然界中唯一能提供可再生芳基化合物的非石化资源,木质素及其分子结构研究备受关注。木质素主要由愈创木基(G)、紫丁香基(S)和对羟基苯基(H)3种基本结构单元组成,其存在不仅能够增强植物细胞壁的机械强度,同时也能够防止微生物对细胞壁的侵害,使木质化的植物直立挺拔,不易腐朽。在植物细胞壁中,木质素和半纤维素以共价键形式结合,构成木质素-碳水化合物复合体,其与纤维素微纤丝交联在一起,形成了一个复杂的三维网络结构,这一结构被认为是植物细胞壁天然的抗降解屏障。在生物炼制过程中,木质素在木质纤维原料细胞壁中的分布特点直接影响生物质的转化效率,因此,在原位状态下研究植物细胞壁木质素分子结构、微区分布以及细胞壁水平的溶解规律具有重要意义。在传统湿部化学中,定性或定量研究木质素分子结构普遍采用的是磨木木素和克拉森木素,这2种方法都需要对木质素样品进行物理或化学预处理,不可避免地会改变木质素样品天然状态下的分子结构。尽管传统的光学和电子显微技术能够提供木质素的微区分布信息,但是样品通常需要染色处理,且制样过程繁琐。相比较而言,显微拉曼光谱技术因其无损、快速、高分辨率和高灵敏度等特点在研究大分子结构、区域化学等方面具有得天独厚的优势。本文首先对G、S、H型木质素模型物拉曼光谱特征峰及这些结构单元在生物质原料中的特征峰进行归属,并简要介绍影响木质素拉曼光谱的因素,在此基础上综述该技术在植物细胞壁木质素微区分布和生物质预处理过程中木质素溶解规律等方面的研究进展,最后对该技术在木质素研究领域的发展方向进行展望,以期为植物生理学和生物炼制研究领域,尤其是设计高效的生物质预处理工艺提供新思路和新方法,进而拓宽该技术在生物大分子研究中的应用范围。  相似文献   

15.
杨木应拉木微区结构可视化及化学成分分析   总被引:1,自引:0,他引:1  
木材微区结构与木材宏观性质密切相关,杨木应拉木与对应木宏观性质存在较大差别,探究杨木应拉木和对应木微区结构和化学成分,可为了解杨木应力木的宏观性质提供理论根据。借助光学显微镜、荧光显微镜、显微拉曼成像光谱仪、透射电镜对杨木应拉木微区结构进行可视化研究,并借助X射线衍射技术和美国可再生能源实验室方法,分析杨木应拉木的微晶尺寸、结晶度以及化学成分。结果表明:杨木应拉木中应拉区和对应区纤维细胞微区结构差异显著。光学显微镜下显示应拉区木纤维中胶质层清晰可见,荧光显微镜和拉曼显微镜下显示胶质层的木质素浓度比对应区低。透射电镜下显示应拉区木纤维细胞壁结构由初生壁、次生壁和胶质层组成,未见次生壁外层,各层的平均厚度分别为0.61,1.22和2.53μm。对应区木纤维为典型的初生壁和次生壁结构,次生壁各层平均厚度分别为0.33,2.28和0.14μm。杨木应拉区纤维素含量(58.91%)比对应区(41.53%)高,木质素含量和半纤维素含量均比对应区的低,应拉区木质素和半纤维素含量分别为21.99%和12.01%,对应区分别为28.10%和17.08%。杨木应拉区结晶度(48.06%)比对应区(41.01%)高,应拉区晶区宽度为2.66 nm,长度为8.84 nm;对应区晶区宽度为2.65 nm,长度为9.87 nm。  相似文献   

16.
【目的】木质纤维素是重要的可再生资源,白腐菌对降解木质纤维素具有特殊的优势。研究3种白腐菌的生物学特性、酶学活性以及菌种间的遗传多样性,系统分析3种白腐菌木质纤维素酶的表达与相关基因多态性的关系,为高产木质纤维素酶菌种选育提供理论基础,为白腐菌木材降解分子机制的研究提供科学依据。【方法】以云芝栓孔菌、火木层孔菌和松杉灵芝3种白腐菌为研究材料,测定在不同培养温度下固体培养基中菌落的生长速度和液体培养基中的生物量变化,利用比色法测量白腐菌5种木质纤维素酶活性,运用目标区域扩增多态性( TRAP)分子标记分析3种白腐菌的木质纤维素降解相关酶基因的多态性。【结果】在不同温度下(23,28℃),3种白腐菌在PDA固体培养基上的生长速度均为云芝栓孔菌>火木层孔菌>松杉灵芝,云芝栓孔菌和火木层孔菌在28℃的生长速度高于23℃,而松杉灵芝在23℃培养生长更快;液体培养基中云芝栓孔菌的生物量高于火木层孔菌和松杉灵芝。3种白腐菌木质素相关酶活性受木屑诱导显著提高,木质素酶活性最高的是漆酶,其次是木质素过氧化物酶,最低的是锰过氧化物酶;纤维素酶的表达在3种白腐菌中无显著差异,但外切纤维素酶活性明显高于内切纤维素酶活性,玉米秸秆为碳源诱导产生的纤维素酶活性明显高于木屑碳源样品。云芝栓孔菌更偏好于木质素酶的表达,而火木层孔菌和松杉灵芝则更偏好于纤维素酶的表达。TRAP分子标记扩增结果显示,木质素酶相关基因的6对引物共产生109条条带,多态性条带为79条,多态性百分比为72.47%;纤维素酶相关基因的11对引物共产生198条条带,多态性条带为140条,多态性百分率为70.70%。【结论】通过生长速度、生物量、木质纤维素酶活性的检测以及 TRAP 分子标记结果表明3种白腐菌在种间具有较高的遗传差异。3种白腐菌木质素酶活性的大小与其酶基因多态性之间没有明显的对应关系;3种白腐菌纤维素酶活性大致相同,其基因多态性也比较一致。  相似文献   

17.
《林业科学》2021,57(1)
【目的】鉴定日本落叶松木质部发育相关基因,构建核心基因与木质部发育相关基因的共表达网络,为后期开展日本落叶松木材形成相关研究提供参考。【方法】对日本落叶松木质部、韧皮部和针叶3个组织进行二代和三代转录组测序,利用R软件的DEseq2包筛选木质部相对韧皮部和木质部相对针叶的差异表达基因,通过整合2组差异基因获得木质部特异表达基因,借助GO、KEGG及BLASTN等生物信息学分析手段探索基因功能,利用WGCNA分析构建木质部特异表达基因共表达网络。【结果】共获得2 596个木质部特异的高表达和低表达基因;GO分析结果显示这些基因在代谢过程、细胞过程、定位膜、细胞、细胞组件、催化活性、位点结合和转运活性等分类中显著富集; KEGG分析结果显示这些基因在淀粉和蔗糖代谢、类黄酮生物合成和代谢途径通路中显著富集,在苯丙烷代谢途径及淀粉和蔗糖代谢途径中分别富集到38个和196个基因;鉴定出木材形成相关基因,包括木质素合成相关基因PAL4、CCR1、C4H、HCT、COMT1、PER12、PER52、CYP98A3、LAC12和LAC17等,纤维素和半纤维素合成相关基因DEC、CEL1、Csl、CTL2和SPS3等; 2 596个木质部特异的高表达和低表达基因经WGCNA分析后筛选出与木质部发育相关基因关联度较高的17个核心基因。【结论】筛选的日本落叶松木质部发育相关基因参与半乳甘露聚糖合成、木葡聚糖合成、纤维素微纤丝形成、细胞壁纤维素合成、次生细胞壁形成过程、纤维伸长过程、调控合成木质素的碳代谢流、木质素生物合成及降解、木质素单体聚合、木质素单体甲基化和细胞程序化死亡等木材形成相关生物学过程;在共表达网络中筛选出的17个核心基因可作为今后研究的重点来探索其在木材形成过程中的具体功能。  相似文献   

18.
以9年生的西江桂(Cinnamomum cassia)和清化桂(Cinnamomum cassia var.macrophyll)人工林木材为研究对象,对其微观结构、木材纤维形态特征和组织比量进行测定分析。结果表明:西江桂木材的的纤维长度、纤维宽度、纤维腔径、双壁厚、长宽比、壁腔比、腔径比分别为894.00μm、24.63μm、16.67μm、7.97μm、36.30、0.48、0.68;清化桂木材的的纤维长度、纤维宽度、纤维腔径、双壁厚、长宽比、壁腔比、腔径比分别为953.67μm、22.37μm、14.40μm、7.97μm、42.65、0.55、0.64。西江桂的木材导管、轴向薄壁组织、木射线、木纤维比量分别为9%、13%、10%、68%;清化桂木材的导管、轴向薄壁组织、木射线、木纤维比量分别为10%、20%、10%、60%。西江桂和清化桂木材的微观构造极为相似;但木材纤维特征中纤维长度、腔径、长宽比、纤维宽度、轴向薄壁组织比量、木纤维比量差异均显著或极显著,其他特征没有显著差异。  相似文献   

19.
木材是一种可再生和机械坚固的天然生物基模板,半纤维素和木质素基质结合纤维素原纤维在木材中分层排列。因此在不改变纤维素原纤维分级排列的情况下去除木材细胞壁中的木质素,可为具有对齐纤维素结构的生物模板功能材料领域带来更多可能性。基于脱木素木材提供的生物模板,可开发出不同的功能材料,并广泛应用于不同领域。文中总结脱木素木材的主要制备方法和功能材料的开发策略,展望脱木素木材衍生功能材料的发展潜力和趋势,旨在为木材功能化研究提供新思路。  相似文献   

20.
【目的】探究影响木材密度的解剖学机制,揭示茎叶解剖和生理性状的协同与权衡关系,有助于阐明不同树种适应环境的生理生态机制。【方法】选择宝天曼天然林中常见的8种落叶阔叶树,测定木材密度、木质部导管及纤维等解剖性状、叶片压力-容积曲线参数等21个茎叶性状,探究决定木材密度的解剖学性状,分析茎叶性状的协同和权衡关系。【结果】1) 8个树种的木材密度与组成木质部的导管、薄壁组织和纤维组织这3大组织的比例都不相关,更多受到纤维细胞性状的影响。2)对木材密度影响最大的木质部性状是纤维细胞腔占横截面的比例,其次是纤维细胞壁占纤维细胞的比例、纤维细胞壁厚与腔直径比、纤维细胞壁厚度等性状。3)木材密度与叶片单叶面积、失膨压时相对含水量和弹性模量呈负相关。4)失膨压时相对含水量与导管水力直径、最大导管直径、平均导管直径、纤维细胞腔面积、纤维细胞腔直径呈正相关;与导管密度、纤维细胞壁厚与腔直径比、纤维细胞壁占横截面比例呈负相关。【结论】木材密度主要由纤维细胞性状决定,而非导管和薄壁组织性状;高的叶片忍耐失水能力耦合于致密的茎纤维细胞和木材密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号