首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A gas chromatographic method is described for determining residues of mecarbam and 3 of its metabolites, mecarboxon, diethoate, and diethoxon, in cottonseeds. For mecarbam analysis, following Soxhlet extraction with chloroform (after blending), the oily extract is partitioned with propylene carbonate and cleaned up on a silica gel column. Metabolites are extracted by the same method, followed by cleanup of mecarboxon on a silica gel column or diethoxon on an alumina column; cleanup of diethoate can be performed on either column. All 4 compounds are determined using a flame photometric detector equipped with a phosphorus filter. Average recoveries for cottonseed samples fortified with 0.03-1.0 ppm mecarbam ranged from 80 to 88%. Average recoveries were 81-88% for mecarboxon and 90-92% for diethoate (alumina column) and diethoxon from samples fortified with 0.05-1.0 ppm. Average recovery of diethoate from samples cleaned up on the silica gel column were 84-88% in the range of 0.05-0.2 ppm. Values obtained for mecarbam residues in field-treated samples are also presented.  相似文献   

2.
Methods for determination of triaryl/alkylphosphates (TAPs) in water, fish, and sediment have been extended to determination of the diarylphosphate (DAP) degradation products. DAPs were extracted from water (adjusted to pH 0.5) by use of XAD-2 resin and determined by gas-liquid chromatography as butyl esters. Recovery of diphenylphosphate (DPP) and o-, m-, p-dicresylphosphates (DoCP, DmCP, DpCP) were greater than 95% in water samples fortified at 1, 10, and 50 micrograms/L. DAPs were extracted from fish with methanol and the extracts were cleaned up on reverse phase (C18) silica cartridges. Recoveries were greater than 87% for DPP, DoCP, DmCP, and DpCP in fish muscle fortified at 50, 100, and 500 ng/g. Sediments were refluxed with aqueous methanol and DAPs were recovered by use of XAD-2 resin. Recoveries of DAPs from sediments fortified at 50 and 100 ng/g were greater than 76%. Interferences (1-10 ng/g) from phosphorus or nitrogen-containing GLC peaks prevented sub- ng/g level analysis for DAPs in sediment and fish extracts.  相似文献   

3.
Bayluscide [the ethanolamine salt of niclosamide (NIC)] is a registered piscicide used in combination with 3-(trifluoromethyl)-4-nitrophenol (TFM) to control sea lamprey populations in streams tributary to the Great Lakes. A high-performance liquid chromatography (HPLC) method was developed for the determination of NIC residues in muscle fillet tissues of fish exposed to NIC and TFM during sea lamprey control treatments. NIC was extracted from fortified channel catfish and rainbow trout fillet tissue with a series of acetone extractions and cleaned up on C(18) solid-phase extraction cartridges. NIC concentrations were determined by HPLC with detection at 360 and 335 nm for rainbow trout and catfish, respectively. Recovery of NIC from rainbow trout (n = 7) fortified at 0.04 microg/g was 77 +/- 6.5% and from channel catfish (n = 7) fortified at 0.02 microg/g was 113 +/- 11%. NIC detection limit was 0.0107 microg/g for rainbow trout and 0.0063 microg/g for catfish. Percent recovery of incurred radioactive residues by this method from catfish exposed to [(14)C]NIC was 89.3 +/- 4.1%. Percent recoveries of NIC from fortified storage stability tissue samples for rainbow trout (n = 3) analyzed at 5 and 7.5 month periods were 78 +/- 5.1 and 68 +/- 2.4%, respectively. Percent recoveries of NIC from fortified storage stability tissue samples for channel catfish (n = 3) analyzed at 5 and 7.5 month periods were 88 +/- 13 and 76 +/- 21%, respectively.  相似文献   

4.
A sensitive method is described for determining dicamba at low micrograms/L levels in ground waters by capillary column gas chromatography with electron-capture detection (GC-EC); compound identity is confirmed by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring. Dicamba residue is hydrolyzed in KOH to form the potassium salt. The sample is then extracted with ethyl ether which is discarded. The aqueous phase is acidified to pH less than 1 and extracted twice with ethyl ether. The combined ethyl ether extracts are concentrated, and the residue is methylated using diazomethane to form the corresponding dicamba ester. The derivatized sample is cleaned up on a deactivated silica gel column. The methylated dicamba is separated on an SE-30 capillary column and quantitated by electron-capture or mass spectrometric detection. Average recoveries (X +/- SD) for ground water samples fortified with 0.40 microgram/L of dicamba are 86 +/- 5% by GC-EC and 97 +/- 7% by GC-MS detections. The EDL (estimated detection limit) for this method is 0.1 microgram dicamba/L water (ppb).  相似文献   

5.
A method for extraction, cleanup, and simultaneous gas chromatographic detection of carbofuran, metalaxyl, and simazine in soils has been developed. Pesticide residues were extracted from soil with acetone containing 10% 0.2M HCl-KCl buffer (pH 2.0), cleaned up with methylene chloride-carbonate buffer (pH 10.7) solvent partitioning and solid-phase extraction on disposable silica gel columns, and quantitated with gas chromatography using a Supelcowax 10 megabore capillary column and a nitrogen-selective detector. Method limits of detection were 0.02 microgram/g for the 3 pesticides in surface soils (0-30 cm depths) and 0.02, 0.02, and 0.005 microgram/g in soils below 30 cm (subsoils) for carbofuran, metalaxyl, and simazine, respectively. Recoveries for carbofuran, metalaxyl, and simazine were 92.6 +/- 5.5, 93.6 +/- 5.0, and 88.4 +/- 6.7%, respectively, when soil samples were spiked with pesticide concentrations ranging from 0.02 to 2.0 micrograms/g.  相似文献   

6.
A gas-liquid chromatographic (GLC) method has been developed for the determination of captan (N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide) and 2 metabolites, tetra-hydrophthalimide (THPI) and tetrahydrophthalamic acid (THPMA), in milk and meat. The sample is extracted with ethyl acetate and is cleaned up by acetonitrile partition and silica gel chromatography where captan, THPI, and THPMA are separated. Captan is directly determined by GLC. THPI and THPMA are separately derivatized in an acetone solution of pentafluorobenzyl bromide. The resultant derivatives are purified separately on an Al2O3 column and quantitated by GLC, using an electron capture detector. Recoveries from milk samples fortified at 0.02-10 ppm ranged from 71 to 102%; recoveries from meat samples fortified at 0.04-10 ppm ranged from 75 to 99%.  相似文献   

7.
A liquid chromatographic (LC) method using a 2-step purification technique for the simultaneous determination of 10 carbamates in bovine, swine, and duck livers has been developed. Carbamates are extracted from liver samples with methylene chloride. After evaporation, the residues from the extract are dissolved in methylene chloride-cyclohexane (1 + 1) and cleaned up by gel permeation chromatography. The eluate containing carbamate residues is evaporated to dryness, reconstituted in methylene chloride, further purified by passing it through an aminopropyl Bond Elut extraction cartridge, and analyzed by liquid chromatography using post-column derivatization with orthophthalaldehyde and fluorescence detection. Excitation and emission are set at 340 and 418 nm, respectively. Liver samples for beef, pork, and duck were fortified with 5, 10, and 20 ppb of mixed carbamate standards. The average of 10 recoveries of 10 carbamates at all 3 levels of fortification was greater than 80% with coefficients of variation less than 17%.  相似文献   

8.
A multiresidue screen for quantitative determination of 43 organophosphorus insecticides in 5 g of plant and animal tissues is described. The organophosphorus insecticides are extracted with methanol-dichloromethane (10 + 90, v/v) and cleaned up using automated gel permeation chromatography with hexane-ethyl acetate (60 + 40) eluant and in-line silica gel minicolumns. Concentrated extracts are analyzed by gas chromatography with flame photometric detection. The method recovers 43 organophosphorus insecticides in the range of 72 to 115%. Analysis of fortified bovine liver (n = 5) shows an average 95.9 +/- 4.8% recovery at the 0.05 micrograms/g level and 93 +/- 3.8% at the 0.5 micrograms/g level. Analysis of fortified bovine rumen content (n = 5) shows an average 98 +/- 4.2% recovery at the 0.1 micrograms/g level and 98.7 +/- 2.8% at the 1 micrograms/g level. Method detection limits ranged from 0.01 to 0.05 micrograms/g for the compounds studied using a nominal 5 gram sample.  相似文献   

9.
In this gas-liquid chromatographic procedure for determining residues of methanesulfonate of m-aminobenzoic acid ethyl ester (MS-222) in fish muscle, homogenized tissue is extracted with distilled water, and proteins are removed by coagulation with trichloroacetic acid, centrifugation, and filtration. After careful pH adjustment of the filtrate, MS-222 is partitioned into benzene-ethyl ether and measured by alkali flame ionization gas chromatography. Tissues with known additions of 1-19 microgram MS-222/g were analyzed, with recoveries of 84-95%.  相似文献   

10.
A method for the quantitative determination of carbaryl insecticide by in situ densitometry was developed. After separation on silica gel thin layer plates, carbaryl residues were detected by using p-nitrobenzenediazonium fluoborate reagent and quantitated by scanning the resultant blue spots with a fiber optics densitometer and comparing them with standards. The method was applied to water fortified with carbaryl at 8 ppb and apples and lettuce fortified at 0.10 ppm; all recoveries were greater than 89%. The 2 crop extracts were cleaned up by using the AOAC thin layer chromatographic method for visual estimation of carbaryl. Related carbamate insecticides were detected by using the same reagent, and the potential for quantitation was demonstrated.  相似文献   

11.
A procedure was developed to determine chlorinated methylthiobenzenes and their respective sulfur oxidation products in fish. Perch samples fortified at the 0.1 ppm level with 2,4,5-trichloromethylthiobenzene, pentachloromethylthiobenzene, and their sulfoxides and sulfones were extracted and cleaned up using an adaptation of the official AOAC method for multiple residues of organochlorine pesticides. The Florisil column cleanup was modified; 200 mL 6% petroleum etherethyl ether eluted the methylthiobenzenes, 200 mL 50% PE-EE eluted the sulfones, and 200 mL EE eluted the sulfoxides. Recoveries determined by electron capture (ECD) gas chromatography (GC) were 75-101% for the methylthiobenzenes and their sulfones and 63-93% for the sulfoxides. Co-extracted materials in the Florisil eluates that interfered with the ECD/GC quantitation were removed by partitioning the sulfoxides and sulfones into sulfuric acid and by thin layer chromatography on silica gel, using methylene chloride-hexane (50 + 50) as the developing solvent. Seven fish samples containing residues of chlorinated benzenes or polychlorinated biphenyls (PCBs) were examined for chlorinated methylthiobenzenes, methylthio-PCBs, and their oxidation products by matching GC retention times obtained with the EC detector and a flame photometric detector operated in the sulfur mode. These analytes were not found in the fish samples above a detection level equivalent to 0.02 ppm 2,4,5-trichloromethylthiobenzene.  相似文献   

12.
A method is described for the simultaneous determination of carbaryl (1-naphthyl methylcarbamate), malathion [diethyl (dimethoxythiophosphorylthio) succinate], fenitrothion (O,O-dimethyl O-4-nitro-m-tolyl phosphorothioate), and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) in sesame (Sesamum indicum L.) seeds. Sesame seeds were Soxhlet extracted with n-hexane, and the extract was subjected to a liquid-liquid partitioning and column cleanup to remove the oily coextractives prior to analysis by high performance liquid chromatography (HPLC). The mean percent recoveries (+/- standard deviations) from sesame seeds fortified with carbaryl (0.004 to 0.035 microgram/g), malathion (0.53 to 4.25 microgram/g), fenitrothion (0.22 to 1.78 microgram/g), and diazinon (0.54 to 4.35 microgram/g) were 83.3 +/- 5.7, 85.5 +/- 6.6, 85. 6 +/- 7.2, and 88.4 +/- 4.8, respectively. The method was used for the simultaneous analysis of carbaryl, malathion, fenitrothion, and diazinon residues in sesame seeds obtained from an Ethiopian field crop that had been treated with the pesticides during its growing period.  相似文献   

13.
A method is presented for the detection of polysorbates (PSs) in 8 kinds of processed foods by colorimetric and thin-layer chromatographic (TLC) techniques. The PSs are extracted from processed foods with a mixture of methylene chloride and ethanol by using an Extrelut column. The extract is further purified by using a silica gel column. The PS extract is complexed with cobalt-thiocyanate (Cothiocyanate) reagent and is determined spectrophotometrically at 620 nm. The recoveries and coefficients of variation for 8 kinds of processed foods fortified with 0.1% PS 80 were 67.9-94.6% and 4.0-11.3%, respectively. The detection limit of TLC corresponded to 50 mg PS 80/kg. PS identity was confirmed by infrared spectrophotometry of PS extract, and gas chromatography of fatty acids and thin layer chromatography of POE-sorbitan residues after saponification.  相似文献   

14.
Residue analysis of the herbicide ametryn (2-methylthio-4-ethylamino-6-isopropylamino-s-triazine) is widely known but an analytical method for determining its metabolites has not yet been reported in the literature. A method has been developed for the extraction and determination of ametryn and 3 metabolites, 2-methylthio-4-amino-6-isopropylamino-s-triazine (GS-11354), 2-methylthio-4,6-diamino-s-triazine (GS-26831), and 2-methylthio-4-amino-6-ethylamino-s-triazine (GS-11355) in taniers , yams , cassava. Residues were extracted from crops with ethyl acetate-toluene (3 + 1 v/v), using a Polytron homogenizer and anhydrous sodium sulfate added for drying. The extracts were cleaned up by automated gel permeation chromatography on Bio-Beads SX-3 gel in the same solvent system. Quantitative determination was performed by gas chromatographic (GC) analysis on a column packed with 5% DEGS -PS on 100-120 mesh Supelcoport using either an N-P detector or a flame photometric detector ( FPD ) in the sulfur mode. Minimum detection by the flame photometric detector is 10 ng each for ametryn , GS-11354, and GS-11355 and 21 ng for GS-26831; by the N-P detector, 0.3 ng of each component gives easily quantitatable peaks. On a parts per million basis, starting with 25 g sample, the FPD detected a minimum level of 0.04 microgram/g each for ametryn , GS-11354, and GS-11355, and 0.08 microgram/g for GS-26831. The N-P detector could detect 0.0024 microgram/g for all 4 compounds. In addition to superior sensitivity, instrumental conditions allowed the complete separation of components in 10 min, for the N-P detector; more than 30 min was required for the FPD . Recoveries from fortified crops ranged from 67 to 111% at levels of 0.1-1.0 microgram/g.  相似文献   

15.
A simple and accurate analytical method for determination of polycyclic aromatic hydrocarbons (PAHs) in fish and shellfish is presented, which is considered to be useful for routine analyses and for screening purposes. The procedure involves alkaline digestion, extraction with n-hexane, silica gel column chromatography, and liquid chromatographic (LC) determination with fluorometric detection. During development of the analytical method for determination of PAHs, it was found that benzo[a]pyrene, a representative PAH, was decomposed easily by the analytical procedure, and this tendency was investigated for the experimental conditions used. Benzo[a]pyrene was decomposed by the coexistence of alkaline conditions, light, and oxygen; by peroxides in aged ethyl ether; and by oxygen when absorbed on silica gel. Thus, to obtain good recoveries and precise analytical results, these decomposition conditions must be avoided. The following precautions are recommended: protection from light through all analytical steps; addition of Na2S to alkaline digestion mixture as an antioxidant; complete removal of peroxides from ethyl ether just before use; quick column chromatography on silica gel; and prevention of air from contact with adsorbent. When this simple method was applied to fish and shellfish samples, very good recoveries of PAHs from fortified fish samples were obtained, and no serious interferences were observed in fish and shellfish extracts.  相似文献   

16.
A gas chromatographic-mass spectrometric method using selected ion monitoring mode for simultaneous determination of 6 sulfonamides in egg and edible animal tissues has been developed. Sulfonamides are extracted from a sample with acetonitrile. The extract is passed through a silica cartridge column and concentrated. Diazomethane in ether is added to methylate sulfonamides. After evaporation, the residue is dissolved in methylene chloride and cleaned up by silica gel column chromatography. The methylene chloride eluate containing sulfonamide-methyl derivatives is evaporated to dryness, redissolved in ether and partitioned between 6N hydrochloric acid. The acid phase is made alkaline, extracted with ether, and the ether solution, after concentration, is analyzed by gas chromatography-mass spectrometry in selected ion monitoring mode. Average recoveries from egg and silver salmon fortified at 1 and 0.2 ppm levels with 6 sulfonamides are 99.2 and 84.3%, respectively; coefficients of variation are 7.03 and 11.20%, respectively. Detection limits are 0.01-0.05 ppm.  相似文献   

17.
A new method for the quantitative determination of 49 kinds of organophosphorus pesticide residues and their metabolites in fish, egg, and milk by dual gas chromatography-dual pulse flame photometric detection was developed. Homogenized samples were extracted with acetone and methylene chloride (1 + 1, v/v), and then the extracts were cleaned up by gel permeation chromatography (GPC). The response of each organophosphorus pesticide showed a good linearity with its concentration; the linearity correlation was not less than 0.99. The detection limits (S/N = 3) of pesticides were in the range of 0.001-0.025 mg kg?1. The recovery experiments were performed by blank sample spiked at low, medium, and high fortification levels. The recoveries for fish, egg, and milk were 50.9-142.2, 53.3-137.2, and 50.3-139.4% with relative standard deviations (RSD, n = 6) of 2.3-24.9, 4.3-26.7, and 2.8-32.2%, respectively. The method was applied to detect organophosphorus pesticides in samples collected from the market, and satisfactory results were obtained. This quantitative method was highly sensitive and exact and could be applied to the accurate determination of organophosphorus contaminants in fish, egg, and milk.  相似文献   

18.
Pet and food animal (hogs, chicken, and fish) feeds were recently found to be contaminated with melamine (MEL). A quantitative and confirmatory method is presented to determine MEL residues in edible tissues from fish fed this contaminant. Edible tissues were extracted with acidic acetonitrile, defatted with dichloromethane, and cleaned up using mixed-mode cation exchange solid-phase extraction cartridges. Extracts were analyzed by liquid chromatography with tandem mass spectrometry with hydrophilic interaction chromatography and electrospray ionization in positive ion mode. Fish and shrimp tissues were fortified with 10-500 microg/kg (ppb) of MEL with an average recovery of 63.8% (21.5% relative standard deviation, n = 121). Incurred fish tissues were generated by feeding fish up to 400 mg/kg of MEL or a combination of MEL and the related triazine cyanuric acid (CYA). MEL and CYA are known to form an insoluble complex in the kidneys, which may lead to renal failure. Fifty-five treated catfish, trout, tilapia, and salmon were analyzed after withdrawal times of 1-14 days. MEL residues were found in edible tissues from all of the fish with concentrations ranging from 0.011 to 210 mg/kg (ppm). Incurred shrimp and a survey of market seafood products were also analyzed as part of this study.  相似文献   

19.
A simple, rapid, highly sensitive liquid chromatographic method is described for the quantitative determination of paraquat and diquat residues in agricultural products. Paraquat and diquat are extracted with hot dilute hydrochloric acid and are cleaned up on an Amberlite CG-50 column, followed by reverse-phase liquid chromatography on an NH2 column, with ultraviolet detection at 257 nm (paraquat) and 310 nm (diquat). The minimum detectable concentration of both paraquat and diquat was 0.5 ng per injection, which corresponds to a lower detection limit of approximately 0.02 microgram/g in the original samples. Recoveries of paraquat and diquat added to various samples were greater than 79%, and averaged 91 and 90%, respectively, at the 0.1 and 1.0 microgram/g spiking levels.  相似文献   

20.
A liquid chromatographic method for determining glyphosate (GLYPH) and its major metabolite aminomethylphosphonic acid (AMPA) in various environmental substrates is described. Ion-exchange column chromatography is coupled with post-column ninhydrin derivatization and absorbance detection at 570 nm. Use of a valve-switching technique allowed quantitation of both analytes in a single chromatographic run and eliminated slow-eluting, coextracted interferences. The method was successfully used to quantitate GLYPH and AMPA in organic and mineral soils, stream sediments, and foliage of 2 hardwood brush species. Mean recovery efficiencies for GLYPH as determined from fortified blank field samples were as follows: bottom sediment 84%, suspended sediment 66%, organic soils 79%, mineral soils 73%, alder leaf litter 81%, salmonberry leaf litter 84%, and artificial deposit collectors 87%. Precision for GLYPH determination was good with less than 14% coefficient of variation on mean recovery for all substrates. Limits of detection were lowest for sediments (0.01 microgram/g dry mass) and highest for foliage substrates (0.10 microgram/g dry mass). Using this system, 6 samples/person/day were routinely analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号