首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
非编码RNA是近年来新发现的一类在生物体内广泛存在的特殊基因.以菜心[Brassica campestris L.ssp.chinensis(L.)Makino vat.utilis]为实验材料,根据普通白菜花粉特异的非编码RNA基因Bc MF11的全长序列设计引物,通过PCR直接扩增的方法从菜心中克隆出BcMF11的同源基因全长序列,命名为BcNR1 (GenBank登录号为EF363720).序列分析显示,该基因全长801 bp,缺乏明显的开放阅读框,而且在序列中多处出现终止密码子,具有非编码RNA基因的序列特征.RT-PCR表达分析结果显示BcNR1是菜心花粉发育特异表达的基因,推测该非编码RNA基因在植物花粉发育中发挥作用.  相似文献   

2.
转菰候选基因克隆获得抗白叶枯病水稻植株   总被引:1,自引:0,他引:1  
以菰NBS-LRR类抗病基因同源序列FZ14(GenBank登录号:DQ239432)为模板设计特异性引物FZ14P1/P2,通过克隆池PCR法经分级筛选,从菰基因组TAC文库中获得1个阳性克隆(ZR1),序列分析比对证实该阳性克隆为含有菰抗病基因同源序列FZ14的抗病基因候选克隆。同时,ZR1具有植物NBS-LRR类型抗性基因中的P-loop(kinase1a)、kinase2、ki-nase3a和GLPL(Gly-Leu-Pro-Leu)等保守基序,可能为抗性基因的部分序列。通过农杆菌介导转化水稻品种日本晴,获得36个对白叶枯病菌PXO71具有明显抗性的独立转化子,结果表明,菰ZR1克隆中至少含有1个白叶枯病抗性基因。  相似文献   

3.
为了给小麦主要过敏原CM16蛋白的重组表达和免疫活性鉴定等研究奠定基础,通过生物信息学方法设计并合成简并性引物,利用RT-PCR技术对小麦主要过敏原CM16基因进行克隆,并进行序列分析. 结果表明,克隆获得了小麦主要过敏原CM16基因.基因开放阅读框为432个碱基(包括终止密码子), 编码143个氨基酸.该序列编码的蛋白相对分子质量约为15 782,等电点为5.17.序列同源性分析发现其与国外报道的已知小麦CM16基因具有很高的同源性(同源性为99%),因此认为其系小麦过敏原基因,在GenBank数据库中的登录号为EU883599.  相似文献   

4.
豫麦34低分子量谷蛋白亚基一个新基因的克隆   总被引:1,自引:0,他引:1  
为了解强筋优质小麦品种豫麦34的低分子量谷蛋白亚基(LMW-GS)的基因构成,利用普通小麦LMW-GS基因特异引物,采用PCR扩增技术从中克隆得到一个LMW-GS新基因LMWY34(GenBank No.GU183486)。该基因具有LMW-GS基因的典型结构特征,编码区全长906 bp,编码302个氨基酸。推导氨基酸序列显示,LMWY34的编码产物N-端具有LMW-m型低分子量谷蛋白亚基的典型特征,与已报道的GluD3-4位点编码的LMW-GS基因序列有很高的一致性(98.68%)。  相似文献   

5.
为了阐明青稞种子中B组醇溶蛋白合成的遗传调控机制,为分子改良大麦和小麦籽粒品质奠定基础,以青稞品种Z09和Z26的基因组DNA为模板,根据已克隆的青稞B组醇溶蛋白(B-hordein)基因的5'端序列设计三个基因特异的反向引物,分别与随机简并引物配对,进行热不对称嵌套PCR(Thermal asymmetric interlaced PCR,TAIL-PCR)扩增,从两份西藏青稞材料中分离克隆出2个B-hordein基因的上游调控序列.序列测定结果表明,两个扩增片段长度分别为395和396 bp,加上已知B-hordein基因中的GSP2引物序列与翻译起始密码子之间198 bp的长度,则可得到约600 bp的B-hordein基因5'上游调控序列.将所得序列与Genbank中的三个贮藏蛋白基因的对应区段进行序列比对,所得序列与来自野生智利大麦(H.chilense)的B3-hordein基因(Genbank登录号:AY998010)、普通小麦(T.aestivum)的低分子量麦谷蛋白亚基基因(Genbank登录号:X07747)和栽培大麦(H.vulgare)的B-hordein基因(Genbank登录号:X03103)具有81%~95%的序列相似性.推测其TATA box位于-80 bp,CAAT-like box位于-140 bp处.另外,在-300 bp处存在一个胚乳盒(Endosperm Box,EB),包含EM基序和GCN4基序.EM基序高度保守,GCN4基序有一个核苷酸位点的突变.此外,在约-560 bp处存在一个胚乳盒类似结构.  相似文献   

6.
利用差异显示技术克隆小麦抗白粉病相关基因的研究   总被引:1,自引:0,他引:1  
对小麦—簇毛麦抗病易位系进行差异显示分析,以期获得小麦抗白粉病基因的分子克隆。根据已克隆植物抗病基因的保守域,设计了简并引物,与锚定引物组合,对抗病诱导的小麦抗白粉病易位系进行了差异显示分析,共获得10个差异片段,其中两个片段R3-1和8C1.3-6Northern杂交为阳性。将这两个片段克隆后进行了测序,序列分析结果为两个新序列,GenBank登录号分别为AF498271和AF498272。R3-1没有发现同源性较高的植物基因序列,发现8C1.3-6与Sphenostylisstenocarpa 类几丁质酶基因有同源性。  相似文献   

7.
NAM基因是NAC基因家族的成员之一,该基因能加速植株叶片衰老,增加籽粒蛋白质积累,并促进锌、铁等微量元素吸收。为选育高蛋白和高微量元素含量的小麦品种,用NAM共显性标记Xuhw89对858份小麦材料进行了筛选,并进一步扩增全长序列。结果表明,有3个栽培二粒小麦含有功能性NAM基因,其中,F37与F40来源的NAM基因分别与已公布的TaNAC2基因和TtNAM-A1基因(GenBank登录号分别为HQ872050和DQ869672)相同;F34来源的NAM基因(命名为TdNAM,GenBank登录号为KU529317)与已公布的TtNAM-B2基因(GenBank登录号为DQ869676)相似度最高,共有5处核苷酸差异,1处发生在内含子,另外4处发生在外显子区,导致了3个氨基酸残基的变化,预测分析发现这种差异不会对蛋白功能产生影响。因此,本研究筛选获得的NAM基因新等位变异可为进一步选育高蛋白、高微量元素含量的小麦品种提供材料和基因资源。  相似文献   

8.
为了深入研究小麦中NAC家族转录因子基因,针对NAC基因家族成员,设计了覆盖其全长编码区的1对特异引物,从陕253小麦品种中克隆了2条大小分别为1 463、1 549 bp的片段,命名为TaNAC2、TaNAC4( GenBank登录号为HQ872050HQ872051)。序列分析表明,这2个序列包含典型NAC的完整编码序列,包括两个内含子,具有完整的开放阅读框;推导的氨基酸序列分别为383、405个,这2个基因在N端均具有NAC基因的典型DNA结合结构域,即 NAC结构域,且氨基酸序列在该结构域的 A、B、C、D、E 5个亚区高度保守,仅在C亚区出现一个氨基酸的差异LM,而且在CD区出现罕见的半胱氨酸变异,此发现对于小麦品质的研究非常重要。同时发现这 2个NAC类转录因子都不含有核定位信号(NLS),但是有相关的转录调控功能区域。通过系统进化树分析,证实克隆序列属于NAC基因家族成员,并且发现的TaNAC4属于NAC转录因子家族的NAM亚组,TaNAC2属于NAC转录因子家族的CUC亚组。  相似文献   

9.
小麦WRKY转录因子在抗旱抗逆等方面有重要作用。为小麦抗旱抗逆分子模块组装育种提供参考,本研究在已有小麦TaWRKY2基因cDNA序列(GenBank登录号:EU665425)的基础上,从小麦品种晋麦79号中克隆获得TaWRKY2基因全长序列,并对TaWRKY2的基因结构、基因组信息进行研究,同时检测其在部分小麦亲缘种、黄淮麦区水旱地代表品种、本课题组选育的高代品系及部分水旱地杂交组合F1代中的分布。结果表明,克隆所得到的TaWRKY2基因全长DNA序列包含4个外显子和3个内含子,其中,3个内含子长度变化范围为111~172 bp;外显子和内含子的交接处序列符合GT-AG原则;与乌拉尔图小麦(Triticum urartu,AA)和粗山羊草(Aegilops tauschii,DD)中的片段序列同源性分别为93%和99%,与中国春小麦(AABBDD)1AS、1BS和1DS染色体的片段序列同源性分别为93%、88%和99%。除野生一粒小麦外,在小麦进化祖先种、黄淮海水旱地推广的代表品种、课题组选育的高代品系及F1代共78份材料中,都能够检测出该基因的普遍存在,说明该基因可应用于小麦抗旱抗逆分子设计育种中。  相似文献   

10.
为了探索普通小麦品种西农538的LMW-GS对面粉加工品质的影响,根据NCBI中已公布的LMW-GS基因序列,设计了一对特异性引物,从西农538基因组DNA中克隆出LMW-GS基因后,对其进行原核表达及掺粉试验。序列分析表明,克隆得到的LMW-GS基因序列(GenBank登录号为KX452081)有单一完整的开放阅读框,编码区长915bp,无内含子。同源性比对及进化树分析发现,该基因属于Glu-D3、Type V(Group 10)、m型、C组LMW-GS基因。SDS-PAGE和Western blot分析表明,该基因原核表达成功。微量掺粉试验表明,诱导表达的蛋白对小麦面粉加工品质有负效应。  相似文献   

11.
为了克隆条锈菌诱导上调表达的小麦腺苷甲硫氨酸脱羧酶(SAMDC)基因并研究其在小麦感病、抗病单株苗期抗条锈病防御反应中的作用,以大麦(Hordeum vulgareL.)SAMDC全长cDNA序列为信息探针,采用电子克隆、RACE(Rapid amplification of cDNA ends)和RT-PCR方法,从条锈菌(Puccinia stri-iformisf.sp.tritici)CYR32侵染的小麦(Triticum aestivumL.)抗条锈病新种质NR1121中分离出1个新的小麦SAMDC基因家族成员,命名为TaSAMDC2(GU016570)。TaSAMDC2基因cDNA序列全长2 003 bp,5′非翻译区区域和一个带有Poly(A)的3′非翻译区区域长分别为553和283 bp;该基因的开放阅读框为1 167 bp,编码388个氨基酸,编码的氨基酸序列包含酶原剪切位点和PEST结构域。基因组序列全长2 539bp,位于5′UTR存在一个526 bp长的内含子序列,内含子的剪切位点均符合真核生物GT-AG规则。同源序列分析表明,TaSAMDC2与来自大麦、水稻(Oryza sativaL.)、玉米(Zea maysL.)、一粒小麦(TriticummonococcumL.)4种植物SAMDC蛋白的相似性分别为95.0%、85.0%、80.0%和80.0%。半定量RT-PCR与实时荧光定量PCR分析表明,TaSAMDC2的表达受条锈菌诱导,小麦苗期经条锈菌侵染后,在抗病材料中,该基因于48 hpi上调表达至最高水平,而在感病材料中先下调、上调表达至最高水平明显滞后。结果提示,分离到的是一个条锈菌CYR32诱导后上调表达的小麦SAMDC基因,该基因可能参与了小麦的抗条锈病反应。  相似文献   

12.
醇溶蛋白盒结合因子(prolamin-box binding factor,PBF)通过调控籽粒蛋白的表达效率进而影响面粉的加工品质。为给深入研究小麦籽粒PBF对籽粒蛋白质表达调控的分子基础提供参考依据,进而为小麦面粉加工品质的改良提供候选基因资源,利用特异引物组合pbfF1/pbf R1分别从两份节节麦(AS90、AS2386)中克隆出pbf基因后进行序列分析,并进一步构建pbf基因的原核表达体系。结果表明,从两份节节麦中克隆得到了2个不同类型的pbf基因(GenBank登录号分别为KJ544771和KJ544772),其中来源于AS2386的KJ544772与来源于普通六倍体小麦的1个pbf基因序列完全相同。推导的氨基酸序列分析表明,KJ544771和KJ544772所编码的蛋白质均为弱碱性的亲水蛋白,具有典型的DOF蛋白结构域。与其他远缘物种来源的PBF比对结果表明,该类蛋白在NLS核心、DOF结构域及Ser铰链区相对保守,而在C-端调控区变异较大,说明PBF蛋白具有种属特异性。同时,系统演化树显示,来源于节节麦AS2386的pbf基因与迄今已知的全部普通小麦的pbf基因具有高度的相似性,因此推测该种类型的节节麦很可能参与了最初的普通六倍体小麦的形成。此外,本研究成功构建了pbf基因的原核表达体系,可为后续功能验证的开展奠定基础。  相似文献   

13.
胚胎发育晚期丰富蛋白(LEA)是一个小的高亲水性的蛋白家族,该蛋白家族在逆境胁迫下大量积累,保护植物免受逆境胁迫。LEA蛋白可分为7组,其中重复的11-氨基酸基序是第3组LEA蛋白的特征。为深入分析第3组LEA蛋白在小麦响应逆境胁迫中的作用机制,利用芯片技术从小麦表达谱中筛选出一个渗透胁迫诱导表达的第3组LEA蛋白基因TaLEAsm,然后根据该基因序列设计引物筛选石麦15的BAC文库,获得1个含有该基因的BAC单克隆,以该BAC单克隆质粒为模板,通过BAC延伸测序克隆了TaLEAsm基因及其启动子序列,并对TaLEAsm序列特征、表达模式和启动子功能进行了初步分析。结果表明,TaLEAsm基因序列仅含有1个105bp的内含子,其开放读码框长675bp,编码224个氨基酸。TaLEAsm含有10个11-氨基酸重复序列,属于第3组LEA蛋白。低温、高盐和渗透胁迫均诱导TaLEAsm基因上调表达,但在根和叶中表达模式不同。在TaLEAsm基因起始密码子上游1 500bp序列中,预测含有14个逆境响应顺式元件。在拟南芥中,TaLEAsm基因启动子能够启动GUS基因表达,渗透胁迫诱导GUS基因明显上调表达。以上结果表明,TaLEAsm为小麦脱水响应基因,其启动子为渗透胁迫诱导启动子。  相似文献   

14.
作物驯化在人类从狩猎和采摘的原始生活状态到农耕文明的演化过程中起着至关重要的作用,落粒性的丧失是作物驯化的首要性状。麦类作物是最早被驯化的作物之一,近年来随着大麦、小麦及其近缘物种基因组测序工作的完成,对麦类作物落粒控制系统驯化分子机制的研究取得了长足进展,本文就麦类作物脆轴性与作物驯化、大麦脆穗基因与驯化模式、小麦脆穗基因的同源性和多态性、脆穗基因在禾本科作物基因组中的排列方式以及影响麦类作物脆穗形成的其他机制等方面的研究进展进行综述,并对麦类作物脆穗基因的研究方向进行展望,以期对相关研究者提供参考。  相似文献   

15.
水稻谷蛋白基因GluB-6的cDNA克隆及表达   总被引:1,自引:0,他引:1  
根据已克隆谷蛋白基因的保守氨基酸序列搜索基因组数据库,获得与之高度同源的水稻基因组序列,通过生物软件进行基因预测和验证,用RT PCR法克隆得到1个新的谷蛋白基因的cDNA克隆。核酸序列分析和体外表达结果表明,该基因cDNA序列全长为1517 bp,含有1个编码495个氨基酸残基的开放阅读框(ORF),推导的氨基酸序列与谷蛋白基因家族的相似性介于53.6%~82.8%,并与B亚族谷蛋白基因的同源性更高,因此命名为GluB 6(GenBank注册号AY429651)。Northern杂交显示,GluB 6基因具有高度的胚乳表达特性。  相似文献   

16.
CO蛋白(CONSTANS)是光周期途径中重要的调控因子,为了从普通小麦中进一步挖掘COlike基因,利用同源克隆的方法得到与大麦HvCO9基因同源的小麦TaCO9基因。结果表明,在冬性品种西农889中,初步克隆得到TaCO9基因的三个同源序列,分别命名为TaCO9-1、TaCO9-2、TaCO9-3。其cDNA序列全长均为870bp,开放阅读框为1 977bp,编码289个氨基酸,含有CO-like蛋白家族典型的CCT结构域,但不含B-box结构域;而在春性品种中发现TaCO9-1序列的第二外显子区域有6个碱基的插入,利用中国春缺-四体材料将该序列定位于小麦的1A染色体,命名为TaCO9-1A。系统发育分析表明,TaCO9蛋白与水稻Ghd7及大麦HvCO9位于同一分支。空间结构分析表明,其CCT结构域的NF-YA2区域较为保守,而该区域与CCAAT box互作相关。本研究克隆得到的TaCO9基因可能是小麦CO-like基因家族的新成员,与大麦HvCO9基因的结构相似,可作为新的小麦光周期候选基因加以研究利用。  相似文献   

17.
肌动蛋白解聚合因子(actin-depolymerizing factor,ADF)普遍存在于真核细胞中,为低分子量的肌动蛋白结合蛋白,在调控细胞内肌动蛋白纤维的聚合和解聚中起关键作用。为给深入研究TaADF8基因在小麦中的功能机理奠定基础,并为进一步丰富小麦ADF基因研究内容提供理论参考,本研究利用电子克隆策略从小麦品种CP53中克隆出TaADF8基因(GenBank登录号为KJ864962)后对其进行序列分析,并进一步采用荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术对其在小麦不同组织间的表达差异及不同非生物胁迫下的表达模式进行分析。核酸序列分析表明,该基因全长695bp,拥有完整的ORF,编码142个氨基酸。氨基酸序列分析表明,该蛋白含有保守的ADF同源区和PIP2结合结构域,且在氨基端有核定位信号。进化和聚类分析表明,小麦TaADF8基因与大麦HvADF2基因、HvADF3基因和水稻OsADF3基因亲缘关系较近,蛋白相似度分别为75.35%、93.66%和67.86%。qRT-PCR表达特性分析显示,该基因为组成型表达,在根、茎、叶、颖壳和雄蕊中均表达,且在根、叶和雄蕊中表达量较高;该基因表达受低温的强烈诱导,同时也受水分、高盐和外源脱落酸胁迫诱导。  相似文献   

18.
为给深入研究Ta DHN2基因在小麦抗旱机制中的作用机理奠定基础,并为进一步丰富小麦DHN基因研究内容提供参考,本研究通过筛选石麦15基因组BAC文库和BAC克隆测序方法克隆了Ta DHN2基因及其启动子,并对Ta DHN2基因序列特征、表达模式和启动子功能等进行了分析和探讨。结果表明,Ta DHN2基因含有1个88 bp的内含子,开放读码框长为696 bp,编码1个含有231个氨基酸的脱水素蛋白。Ta DHN2蛋白具有Y-segment、S-segment和K-segment结构域,属于YSK2类型脱水素蛋白。此外,该蛋白含有明显的核定位信号序列S-segment和基序RRKK。Ta DHN2基因受渗透胁迫诱导表达,在根和叶中表达模式类似,叶中表达量显著高于根中。Ta DHN2基因启动子序列长为2 025 bp,预测含有9个脱水响应顺式元件。在转基因拟南芥中,Ta DHN2基因启动子能够启动GUS基因表达,并在渗透胁迫下诱导GUS基因上调表达。以上结果说明,Ta DHN2基因为脱水响应基因,其启动子为渗透胁迫强诱导启动子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号