首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
基于EFAST和PLS的苹果叶片等效水厚度高光谱估算   总被引:2,自引:2,他引:0  
叶片等效水厚度(EWT)是评估果树生长状况及产量的一个重要参数。为了快速、准确地估算此参数,该文建立苹果叶片EWT归一化近红外水分指数(NDIWI)和扩展傅里叶幅度灵敏度检测方法和偏最小二乘回归(EFAST-PLS)估算模型并验证。使用2012年和2013年在中国山东省肥城县潮泉镇获取的整个生育期苹果叶片EWT和配套的光谱数据,比较NDIWI和EFAST-PLS联合模型。在EFAST-PLS联合模型中,EFAST用来选择光谱敏感波段,PLS用来回归分析。NDIWI与EFAST-PLS模型的决定系数(R2)分别为0.2831和0.5628,标准均方根误差(NRMSE)分别为8.00%和6.25%。研究结果表明:EFAST-PLS模型估算苹果叶片EWT潜力巨大,考虑到应用简单,NDIWI也有可取之处。  相似文献   

2.
基于特征光谱参数的苹果叶片叶绿素含量估算   总被引:1,自引:4,他引:1  
果树叶绿素含量的快速、无损、准确监测,可以及时掌握果树的营养水平,对指导果树管理具有重要意义。该文利用2012年和2013年山东省肥城市潮泉镇下寨村的苹果叶片叶绿素含量和叶片光谱数据,分析了叶绿素含量和苹果叶片原始光谱及其变换形式之间的相关性,筛选出较优光谱参数,并利用随机森林法、偏最小二乘法、BP神经网络和支持向量机回归法进行估算和验证。结果表明:1)叶绿素含量与叶片原始光谱及其变换形式之间的最优光谱参数分别为554和708 nm的原始光谱反射率,554和708 nm倒数之对数光谱,535、569、700和749 nm一阶微分光谱以及557和708 nm连续统去除光谱;2)随机森林、偏最小二乘法、BP神经网络和支持向量机估算模型的R2分别为0.94,0.61,0.66和0.60,RMSE分别为0.34,0.78,0.75和0.81 mg/dm2。说明随机森林算法模型用于估算苹果叶片叶绿素含量效果较好,为及时了解果树养分状况及果树营养诊断提供技术支持。  相似文献   

3.
不同生长期柑橘叶片磷含量的高光谱预测模型   总被引:2,自引:2,他引:2  
针对传统柑橘叶片磷含量检测耗时费力、操作繁琐且损伤叶片等弊端,该研究引入高光谱信息探索柑橘叶片磷含量快速无损检测与预测模型,选ASD Field Spec 3光谱仪采集柑橘4个重要生长期的叶片反射光谱,同步采用硫酸-双氧水消煮-钼锑抗比色法测定叶片的磷含量;先用正交试验确定小波去噪的最佳去噪参数组合,再分别选拉普拉斯特征映射(laplacian eigenmaps,LE)、局部线性嵌入(locally-linear embedding,LLE)、局部切空间对齐(local tangent space alignment,LTSA)、等距映射(isometric mapping,Isomap)和最大方差展开(maximum variance unfolding,MVU)5种典型的流形学习算法对去噪后的光谱数据进行降维和特征提取,进而建立基于支持向量机回归(support vector regression,SVR)的柑橘叶片磷含量预测模型。结果表明,基于一阶导数谱的Isomap-SVR建模结果最佳,全生长期校正集和验证集模型决定系数分别为0.9430和0.8949。试验表明,5种流形学习算法皆适用于对柑橘叶片磷含量的预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。  相似文献   

4.
库尔勒香梨叶片全钾含量高光谱估算模型研究   总被引:3,自引:1,他引:3  
为实现库尔勒香梨养分状况的无损、实时、快速监测,利用便携式光谱仪(SVC HR-768)测定不同钾肥施用量的20年树龄库尔勒香梨叶片光谱反射率,并结合叶片全钾含量的室内分析,对叶片全钾含量与原始光谱、一阶导数光谱、高光谱参数之间相关性进行分析。结果表明:在425 nm处原始光谱与叶片全钾含量构建的线性模型,调整决定系数R2值达到0.913;在630 nm处一阶微分光谱与全钾含量构建的线性模型,调整决定系数R2值为0.986。叶片全钾含量与高光谱特征变量中绿峰位置变量(Rg)和红谷位置变量(Ro)的相关性极显著,由此构建的线性模型调整决定系数R2值均达到0.96以上。通过模型检验,确定基于630 nm的光谱一阶微分(X630)模型Y=1 136.835X630+50.709为库尔勒香梨叶片全钾含量(Y)的最优估测模型。  相似文献   

5.
基于高光谱的冬油菜叶片磷含量诊断模型   总被引:5,自引:2,他引:3  
为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730~1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。  相似文献   

6.
基于高光谱的叶片滞尘量估测模型   总被引:1,自引:1,他引:1  
为探索建立叶片滞尘量高光谱估测模型,利用光谱仪和电子分析天平采集了北京市区杨树叶片高光谱数据和滞尘量数据,研究了叶片光谱特征与滞尘量间的关系,并建立了基于光谱参数的叶片滞尘量估测模型。研究结果表明:近红外波段(730~1 000 nm)光谱反射率与叶片滞尘量呈现明显的线性相关性,各波段相关系数均高于0.7,绿光区波段反射率对叶片滞尘的影响不敏感;三边参数中仅红边幅值、红边面积与叶片滞尘量达到显著相关;基于多元线性回归、主成分回归、偏最小二乘回归建立的模型均具有较强的预测能力,其中以偏最小二乘回归为模型构建方法,以749、644、514 nm波段的光谱反射率值,红边幅值,红边面积,924、1 010 nm波段组成的归一化指数,713、725 nm波段组成的差值指数,749、644 nm波段组成的归一化植被指数为自变量建立的模型估测精度最好,其建模和预测的决定系数分别达到0.734和0.731,预测均方根误差为0.311。该研究为促进高光谱技术在大气降尘监测中的应用提供参考。  相似文献   

7.
基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算   总被引:15,自引:4,他引:11  
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与 SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和 BP 神经网络的 SPAD 估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与 BP 神经网络模型进行比较。结果表明:SPAD 值与一阶微分光谱在763nm 处具有最大相关系数(R=0.901);以763 nm 处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片 SPAD 估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测 SPAD 值作为输出,构建 BP 神经网络模型,其建模与验模 R2分别为0.887和0.896,RMSE 为2.782,RE 为4.59%,与其他回归模型相比,BP 神经网络模型预测精度最高,研究表明 BP 神经网络对叶绿素具有较好的预测能力,是估算玉米叶片 SPAD 值的一种实时高效的方法。  相似文献   

8.
玉米叶片氮含量的高光谱估算及其品种差异   总被引:11,自引:4,他引:7  
准确、快速、及时地对玉米氮营养状况做出判断是氮肥合理施用的基础。该研究在水培条件下对3个玉米品种(组合)叶片氮含量(LNC)的高光谱敏感波段、估算模型及其品种差异进行了探讨。结果表明,LNC与不同波段叶片光谱反射率的相关性存在品种差异,但3个品种(组合)都在500~649 nm和691~730 nm表现极显著的负相关关系,并在同一波长获得最高的相关系数,说明可以利用统一的波段来预测不同品种的LNC。依品种建立了LNC与归一化差值光谱指数(NDSI)或比值光谱指数(RSI)的定量关系模型,NDSI(714,554)和RSI(714,554)所建模型的拟合度最好,直线和指数模型拟合度均达到极显著水平,可以用来估算玉米LNC。玉米LNC估算中,以该品种数据所建模型的估算偏差最低,利用综合模型或其他品种模型则加大了估算偏差,高估与低估的最高偏差分别为35.6%和32.7%。在利用高光谱技术进行玉米氮营养状况诊断的研究及应用中,应考虑品种间差异。  相似文献   

9.
棉花叶片厚度的高光谱测试方法   总被引:1,自引:0,他引:1  
植物叶片厚度的变化能够指示植物生长状态的改变,为了实时、活体、无损地获取叶片厚度,该研究以棉花叶片为研究对象,利用DPS、Origin统计分析软件分析84组光谱数据与叶片厚度的相关性。研究表明,光谱反射率与叶片厚度在可见光350~369 nm及664~689 nm 2个较窄区域达到了极显著正相关关系,在红外917~1 884、2 048~2 380 nm 2个区域呈极显著负相关关系,总体相关程度红外波段高于可见光波段。红边参数与叶片厚度的相关性不高,24个形状参数与厚度达到了极显著相关水平,其中,中心为980 nm的吸收谷面积与叶片厚度相关度最高,相关系数为0.848。分别用反射率、植被指数、光谱形状参数建立并测试3个估算模型,相对误差最高为7.4%,均方根差最高为0.051 mm。结果表明利用高光谱分析技术,可以实现叶片厚度的快速、活体测量。  相似文献   

10.
基于BP神经网络的橡胶苗叶片磷含量高光谱预测   总被引:4,自引:3,他引:1  
为验证高光谱技术在橡胶苗叶片磷素营养诊断方面的可行性,该文以砂培橡胶苗为研究对象,利用高光谱仪测得不同磷处理水平下橡胶苗叶片光谱反射率,并应用微分技术求取去噪后光谱反射率一阶和二阶导数,以叶片磷含量和光谱变量相关性分析为基础,选择出叶片磷含量敏感波段,最后以敏感波段为输入变量,结合多重线性回归、偏最小二乘回归和反向传播神经网络模型对叶片磷含量进行预测。结果表明:原始光谱反射率555和722 nm、一阶导数674、710、855、1 091、1 197、1 275、1 718、2 181和2 228 nm以及二阶导数816、890、1 339、1 357和2 201 nm为叶片磷含量敏感波段;反向传播神经网络模型预测精度最高,训练集和验证集中预测值和实测值之间的相关系数r分别为0.964和0.967,均方根误差RMSE分别为0.0139和0.00856,模型性能指数(ratio of performance to deviation,RPD)分别为3.71和3.23,证明高光谱技术可以快速、准确诊断橡胶苗叶片磷含量。  相似文献   

11.
为探索不同生理物候期苹果树叶片氮素含量的快速检测方法。分别在果树坐果期、生理落果期和果实成熟期,使用光谱仪测量了果树叶片在可见光和近红外区域的反射光谱,同时在实验室测定了果树叶片的全氮含量。研究首先将实验所得的光谱反射率与氮素含量以果树为单位进行聚类,利用小波包分析技术对每棵果树的光谱信息进行分解,提取出的低频信号和去除高频噪音后的信号分别组成了低频全光谱和去噪全光谱。针对这两个全光谱均实施了主成分分析,利用提取主成分分别建立了果树不同生长阶段的氮素含量多元线性回归模型。对比基于归一化植被指数(NDVI)建立的氮素含量估测模型发现,利用全光谱信息建立的氮素含量预测模型精度更高;在坐果期和果实成熟期,使用去噪全光谱提取的主成分建立的氮素预测模型最优;而在生理落果期,使用低频全光谱提取的主成分建立的模型最优。结果表明,利用小波包分析技术能够有效地提高苹果果树叶片氮素含量的光谱预测能力。  相似文献   

12.
基于光谱特征分析的苹果树叶片营养素预测模型构建   总被引:2,自引:3,他引:2  
该文旨在利用光谱分析技术建立高精度苹果叶片营养素预测模型,为苹果树的精细管理提供技术支持。在苹果树年度生长周期的坐果期、生理落果期和果实成熟期等重要物候期,采集了180个果树叶片样本并测量了果树叶片在可见光和近红外波段的反射光谱,同时在实验室采用化学方法获取了果树叶片的氮素以及叶绿素含量。对于聚类后样本,分别分析了果树叶片反射光谱以及经小波滤波后的反射光谱与叶绿素以及氮素之间的相关关系,而后利用偏最小二乘和支持向量机(SVM,support vector machine)方法分别建立了果树叶片叶绿素和氮素含量的回归模型。研究发现,随着生长阶段的推进,在可见光处的反射率逐渐升高,在近红外处的反射率逐渐降低,且基于小波滤波反射光谱的营养素SVM回归模型精度最高:建立的叶绿素回归模型,其测定系数R2达到0.9920,均方根误差 RMSE为0.0039,验证精度R2达到0.9036,RMSE为0.1979;建立的氮素回归模型,其测定R2和验证R2也达到0.74以上,模型的回归RMSE为0.0554,验证RMSE为0.1215。结果表明,采用支持向量机回归模型可以精确估计果树叶片叶绿素含量,对氮素含量的估计精度也达到了实用化水平。  相似文献   

13.
面向移动端的苹果叶部病虫害轻量级识别模型   总被引:2,自引:2,他引:0  
花叶病、斑点落叶病、褐斑病、白粉病、黄蚜、浅叶蛾和红蜘蛛是常见的苹果叶部病虫害,严重影响了苹果的产量和品质。病虫害早期诊断和防治可以有效地控制病害传播,降低损失,保障苹果产业的健康发展。为解决现有轻量级模型无法精准识别早期苹果叶部稀疏小病斑的问题,该研究面向资源受限的移动端设备,提出一种轻量级识别模型ALS-Net(Apple Leaf Net using Channel Shuffle)。在轻量化模型(ShuffleNetV2)的基础上,基于深度可分离卷积和通道混洗构建ALS模块,可降低模型的计算量和参数量。其次,采用知识蒸馏策略训练模型,进一步提高网络精度。试验结果表明,ALS-Net的模型精度可达99.43%,且模型大小仅为1.64 MB。移动端推理延迟为55 ms,能够有效满足实际应用需求,并实现基于移动端的苹果叶部病虫害自动实时监测。  相似文献   

14.
基于赤池信息准则的冬小麦植株氮含量高光谱估算   总被引:4,自引:2,他引:2  
为了快速、准确地测定冬小麦植株氮含量,利用2014?2015年的冬小麦冠层反射光谱数据构建了16种氮素或叶绿素敏感光谱指数,基于变量投影重要性(variable importance projection,VIP)-偏最小二乘(partial least squares,PLS)-赤池信息准则(Akaike’s information criterion,AIC)整合模型构建了不同生育期植株氮含量最佳回归模型,并用2012?2013年挑旗期数据对模型进行了验证。结果表明:在AIC下,拔节期以4个植被指数为自变量的模型最优;挑旗期以5个植被指数为自变量的模型最优;开花期以4个植被指数为自变量的模型最优;灌浆期以6个植被指数为自变量的模型最优。4个生育期建模的决定系数(R2)和均方根误差(RMSE)分别为0.71、0.86、0.75、0.46和0.23%、0.13%、0.12%、0.15%,以挑旗期决定系数为最大。挑旗期验证集的R2和RMSE分别为0.81和0.41%,预测模型和验证模型均具有较高的估算精度和可靠性,研究结果为选择小麦合适的生育期估算小麦植株氮营养状况提供参考。  相似文献   

15.
为实现玉米叶片水分含量快速检测,利用近红外光谱仪在300~1 700 nm采用透射法对玉米叶片水分含量进行快速检测。试验利用烘干法对叶片水分梯度进行控制,并测量玉米叶片的透射光谱曲线和含水率。对透射光谱数据采用Savitzky-Golay方法进行平滑预处理,滤除光谱波动噪声干扰。分析了叶片透射光谱与含水率之间的相关关系,通过相关性分析提取敏感波长800、932、1 423 nm;利用主成分分析法提取敏感波长478、748、1058和1 323 nm。综合二者敏感波长最终筛选出水分敏感波长800、1 323、1 058和1 423 nm。利用这4个波长的组合得到比值植被指数、差值植被指数和归一化植被指数等12种植被指数,选取了最优差值植被指数DVI(1423、800)与透射率T1 323和T1 058建立了玉米叶片含水率多元线性回归诊断模型,建模集决定系数Rc2=0.968 8,验证集决定系数Rv2=0.951 9,预测结果方根误差为0.061。结果表明,利用透射光谱技术检测的玉米叶片水分含量具有较高的精度,可为植物叶片水分快速检测仪器开发提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号