首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bispyribac-sodium {sodium 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy] benzoate} has recently been introduced to California where it effectively controls Echinochloa spp. in rice ( Oryza sativa L.). However, biotypes of early watergrass ( Echinochloa oryzoides (Ard.) Fritsch) and late watergrass ( E. phyllopogon (Stapf ) Koss.) have evolved resistance to this herbicide. In 2001 and 2002, greenhouse and field experiments evaluated interactions between thiobencarb { S -[(4-chlorophenyl) methyl] diethylcarbamothioate} and bispyribac-sodium on resistant (R) and susceptible (S) late watergrass in California rice. Synergism was assessed using Colby's test and regression analysis. In the greenhouse, thiobencarb at 4480 and 5333 g ai ha−1 synergistically reduced bispyribac-sodium GR50 values on the R and S biotypes by 50–70% without increasing toxicity to rice. Synergism was also observed on S late watergrass in the field when 10 g ai ha−1 bispyribac-sodium was mixed with 1120–2240 g ai ha−1 thiobencarb. These effects could be related to interactions between thiocarbamates and enzymes in Phase I reactions of herbicide metabolism. This synergism results in better control at lower rates allowing a reduction in weed control costs, the herbicide load on the environment and a lower selection pressure towards resistant weed biotypes.  相似文献   

2.
BACKGROUND: Late watergrass [Echinochloa phyllopogon (Stapf.) Koss.] is a major weed of Californian rice that has evolved P450-mediated metabolic resistance to multiple herbicides. Resistant (R) populations are also poorly controlled by the recently introduced herbicide clomazone. The authors assessed whether this cross-resistance was also P450 mediated, and whether R plants also had reduced sensitivity to photooxidation. Understanding mechanism(s) of resistance facilitates the design of herbicide management strategies to delay resistance evolution.RESULTS Ratios (R/S) of R to susceptible (S) GR(50) were near 2.0. [(14)C]Clomazone uptake was similar in R and S plants. Clomazone and its metabolite 5-ketoclomazone reduced chlorophyll and carotenoids in S more than in R plants. The P450 inhibitors disulfoton and 1-aminobenzo-triazole (ABT) safened clomazone in R and S plants. Disulfoton safened 5-ketoclomazone only in S plants, while ABT synergized 5-ketoclomazone mostly against S plants. Paraquat was more toxic in S than in R plants.CONCLUSION: Cross-resistance to clomazone explains failures to control R plants in rice fields, and safening by P450 inhibitors suggests that oxidative activation of clomazone is needed for toxicity to E. phyllopogon. Clomazone resistance requires mitigation of 5-ketoclomazone toxicity, but P450 detoxification may not significantly confer resistance, as P450 inhibitors poorly synergized 5-ketoclopmazone in R plants. Responses to paraquat suggest research on mechanisms to mitigate photooxidation in R and S plants is needed. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

3.
Rice (Oryza sativa), a relatively tolerant species, and early watergrass (Echinochloa oryzoides; EWG), a relatively susceptible species, were exposed to 14C-labeled clomazone to determine accumulation, biotransformation, and mass balance. On a total mass basis, rice absorbed more clomazone than EWG (p < 0.05), but on a nmol/g basis, there was no significant difference between the two species (p > 0.05). Rice contained more extractable 14C residues (7.7 ± 0.5 vs. 4.8 ± 0.5 nmol in rice vs. EWG, respectively; p < 0.5), but the concentration in EWG was significantly higher (4.2 ± 0.5 vs. 1.8 ± 0.1 nmol/g in EWG vs. rice, respectively; p < 0.01). More metabolized residue was measured in EWG compared to rice (84.1% vs. 67.9%; p < 0.01). Both species produced hydroxylated forms, β-d-glucoside conjugates, and several other unidentified polar metabolites, but EWG generally produced higher metabolite concentrations. The concentration of the suspected active metabolite, 5-ketoclomazone, was significantly higher in EWG vs. rice (21 ± 2 vs. 5.7 ± 0.5 pmol/g, respectively; p < 0.01). Differences in sensitivity to clomazone between rice and EWG appear to be due to differential metabolism, but in this case the more susceptible EWG qualitatively and quantitatively metabolized more clomazone than the more tolerant rice. This is consistent with the action of a metabolically activated herbicide. This metabolic difference could be exploited to develop herbicide safeners for use with clomazone.  相似文献   

4.
Glutathione S -transferase (GST) isozymes were investigated in one-leaf-stage rice ( Oryza sativa L. cv. Nipponbare) and early watergrass ( Echinochloa oryzicola Vasing) shoots after being induced by treatment with a combination of pretilachlor [2-chloro-2',6'-diethyl-N-(2-propoxyethyl)acetanilide] and fenclorim (4,6-dichloro-2-phenylpyrimidine) using DEAE-Sephacel anion exchange chromatography. Non-treated plants contained GST isozymes that had activity to the following substrates: three isozymes for l-chloro-2,4-dinitrobenzene (CDNB), six isozymes for pretilachlor and three isozymes for fenclorim in rice shoots; and four isozymes for CDNB, three or four isozymes for pretilachlor and two or three isozymes for fenclorim in early watergrass shoots. Glutathione S -transferase isozyme activities of non-treated plants were higher in rice than in early watergrass, especially in the case of GST activity with fenclorim as a substrate. Pretreatment of rice roots with a combination of pretilachlor and fenclorim increased the activity of the constitutively expressed isozymes that exhibited activity with CDNB, pretilachlor and fenclorim. This pretreatment also caused the appearance of one new GST(fenclorim) isozyme. Pretreatment of early watergrass roots with a combination of pretilachlor and fenclorim produced almost no increase in activity of some constitutively expressed isozymes that exhibited activity to CDNB and fenclorim, although it partly increased the peaks to corresponding to pretilachlor. The induction of GST was higher in rice than that in early watergrass. These results indicated that the isozyme pattern and substrate specificity of GST isozymes in rice were different from those in early watergrass. Furthermore, the selectivity of pretilachlor between rice and early watergrass may be related to different constitutively expressed GST(pretilachlor) isozyme activities and the induction of GST(pretilachlor) isozyme activities in the combination treatment.  相似文献   

5.
Two populations of Echinochloa crus-galli (R and I) exhibited resistance to quinclorac. Another population (X) exhibited resistance to quinclorac and atrazine. The R and I populations were collected from monocultures of rice in southern Spain. The X population was collected from maize fields subjected to the application of atrazine over several years. The susceptible (S) population of the same genus was collected from locations which had never been treated with herbicides. The quinclorac ED50 value (dose causing 50% reduction in shoot fresh weight) for the R and I biotypes were 26- and 6-fold greater than for the S biotype. The X biotype was 10 times more tolerant to quinclorac than the S biotype and also showed cross-resistance to atrazine, being 82-fold more resistant to atrazine than the R, I and S biotypes. Chlorophyll fluorescence and Hill reaction analysis supported the view that the mechanism of resistance to atrazine in the X biotype was modification of the target site, the DI protein. Quinclorac at 20 mg litre-1 did not inhibit photosynthetic electron transport in any of the test biotypes. The quinclorac I50 values (herbicide dose needed for 50% Hill reaction reduction) of the S population was over 50000-fold higher than the atrazine I50 value for the same S population, indicating that quinclorac is not a PS II inhibiting herbicide. Propanil at doses greater than 0·5 kg ha-1 controlled all the biotypes. © 1997 SCI  相似文献   

6.
Aryl acylamidase (aryl-acylamine amidohydrolase, EC 3.5.1.13) activity has been measured in crude extracts from leaves of propanil-susceptible (S) and propanil-resistant (R) biotypes of the grass weed. Echinochloa colona (L.) Link from Columbia. Both specific and total amidase activity increased with plant age up to 15 days (four-leaf stage), then decreased beyond 20 days to about 50% of the maximum at 36 days in both R and S E. colona biotypes. Specific activity with propanil in the R biotype was about 80% of that obtained for rice (Oryza sativa L.), compared to 25% in the susceptible biotype. The specific activity of the propanil amidase was three-fold higher in the R biotype than in the S. Partially purified amidase extracts from rice and both S and R biotypes of E. colona were compared biochemically. Both rice and E. colona amidases had a pH optimum of 7.5 and native relative molecular masses, estimated by gel filtration, of 179 000 and 181 000, respectively. Out of six substrates tested, three produced appreciable activity (propanil, 4-chloroacetanilide and acetanilide) in both rice and E. colona. Michaelis constants showed that the rice amidase had a higher affinity for propanil (0.36 mM) than had the E. colona enzyme (1.1 mM). Carbamates and organo-phosphorus pesticides were shown to inhibit amidase activity in partially purified rice and E. colona extracts. Additional preliminary data have implicated peroxidase in the next step of propanil metabolism in vitro. These data demonstrate that increased aryl acylamidase activity contributes to resistance to the herbicide propanil in E. colona weeds. Also, a biochemical comparison of purified aryl acylamidases from S and R biotypes of E. colona is presented for the first time.  相似文献   

7.
Pesticides, such as herbicides can affect the metabolic and toxicological parameters on fish. For this reason, an experiment was carried out with the objective of to evaluate the effects of commercial formulations of clomazone and propanil herbicides on acetylcholinesterase (AChE), thiobarbituric acid-reactive substances (TBARS), catalase (CAT) and metabolic parameters in teleost fish (Leporinus obtusidens). Fish were exposed during 90 days to field measured concentration of the herbicides clomazone and propanil (376 and 1644 μg/L, respectively) on rice paddy water. Specific AChE activity in the brain and muscle decreased and TBARS levels decreased in brain, muscle and liver tissues. Liver catalase decreased after exposure to both herbicides. Metabolic parameters in the liver and white muscle showed different changes after exposure to both herbicides. In summary, the results showed that clomazone and propanil affects toxicological and metabolic parameters of piavas. These results suggest that environmentally relevant herbicides concentrations are toxic to Leporinus obtusidens.  相似文献   

8.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

9.
10.
Field resistance of Echinochloa spp. to propanil has been previously reported in Costa Rica, Colombia and Arkansas (USA). In this study, the mechanism of resistance was investigated in three resistant (R) and three susceptible (S) biotypes. The shoot fresh weight reduction in pot-grown plants from a post-emergence spray of propanil at 2.44 kg a.i. ha−1 on biotypes R/S from Costa Rica, Colombia and Arkansas was 35/98%, 25/79% and 20/82% respectively. In vitro chlorophyll fluorescence data from leaf tissue incubated in propanil showed that photosynthesis was inhibited in all biotypes, indicating that the propanil-binding site and enzyme were not altered. After transfer to herbicide-free solution, photosynthesis recovered only in resistant biotypes, indicating that the mechanism of resistance was caused by enhanced metabolism of the herbicide. Simultaneous treatment with fenitrothion, an aryl acylamidase inhibitor, prevented the recovery of photosynthesis in leaf tissue in two resistant biotypes. In contrast, the cytochrome P450 mono-oxygenase inhibitor, 1-aminobenzotriazole, did not prevent recovery from propanil in leaf tissue. Application of 14C-propanil to the second leaf of intact Echinochloa plants showed that c . 90% of the radioactivity remained in the treated leaf for up to 72 h after application. No major differences in translocation between R and S biotype plants were found. TLC analysis of tissue extracts from the treated leaves showed substantially less radioactivity associated with propanil, present after 72 h in rice or in the three R biotypes, compared with S biotypes.  相似文献   

11.
Glasshouse and laboratory experiments were conducted on acetolactate synthase (ALS) homozygous resistant Solanum ptycanthum biotypes from Illinois (IL‐R) and Indiana (IN‐R), and homozygous susceptible biotypes from Illinois (IL‐S) and Indiana (IN‐S). Genetic similarity of biotypes was assessed by random amplified polymorphic DNA (RAPD) markers, which determined that the Illinois biotypes are more similar to each other than to the IN‐R biotype. ALS enzyme activity from the IL‐R and IN‐R biotypes had I50 values of 362 and 352 μM imazamox respectively. Dose–response experiments using three‐ to four‐leaf‐stage plants of the IL‐R and IN‐R biotypes had GR50 values of 242 and 69 g ae ha−1 imazamox respectively. Whole‐plant and ALS enzyme results are different than previously reported values in the literature, which was attributed in the current study to the original IN‐R population having individuals that were segregating for ALS resistance. Metabolism studies showed no difference in percentage [14C]imazamox remaining between the IL‐R and IN‐R biotypes up to 72 h after treatment. The IL‐S biotype metabolised [14C]imazamox approximately two times faster than the IL‐R and IN‐R biotypes and this trait was heritable. Response of F3 plants containing homozygous ALS‐resistant alleles from the IL‐R biotype in a genetic background of 50% Illinois and 50% Indiana biotypes suggests that genetic factors other than an altered target site or metabolism may also contribute to the magnitude of resistance at the whole‐plant level in resistant biotypes.  相似文献   

12.
Effects of environmental factors on the germination and seedling emergence of glyphosate‐resistant (R) and ‐susceptible (S) biotypes of Eleusine indica (L.) Gaertn. were examined under laboratory and greenhouse conditions. The R biotype exhibited a higher germination percentage compared with the S biotype at constant temperatures of 20 and 35°C under dark conditions, and alternating temperatures of 30/25°C, and 35/25°C during a 12 h photo period. For both biotypes, germination was optimal at alternating temperatures of 30/20°C and 35/20°C. However, there was no significant difference (P > 0.05) in the germination between the R and S biotypes at these temperature regimes. The germination of both biotypes was inhibited by osmotic stress imposed by a water potential of ?0.80 MPa. When the moisture stress was released and the seeds were subsequently transferred to distilled water, the germination was enhanced to approximately 90% and 16% for the R and S biotype seeds, respectively. Higher emergence rates were obtained in shallow seed depths (0 or 2 cm) compared to deep depths. Emergence percentage of the R biotype was higher than that of the S biotype at 0 cm and 2 cm depths. The maximum emergence percentage of the R biotype was higher than that of S biotype when seeds were sown on the surface of either loamy or clay loam soil taken from three different sites.  相似文献   

13.
Nine Monochoria vaginalis Pres1 accessions from Chonnam province, Korea were tested for resistance to the sulfonylurea herbicide, imazosulfuron, in whole-plant response bioassay. All accessions were confirmed resistant (R) to imazosulfuron. The GR50 (imazosulfuron concentration that reduced shoot dry weight by 50%) values of R accessions were 1112-3172 (accession #9) times higher than that of the standard susceptible (S) accession. Accession #9 exhibited cross-resistance to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, but not to the imidazolinone herbicides, imazapyr and imazaquin. The R biotype could be controlled by other herbicides with different modes of action, such as mefenacet and pyrazolate, applied to soil at recommended rates. Foliar-applied herbicides, 2,4-D and bentazone, also controlled both the R and S biotypes. Sulfonylurea-based mixtures, except ethoxysulfuron plus fentrazamide, did not control resistant M. vaginalis. Rice yield was reduced 70% by resistant M. vaginalis that escaped pyrazosulfuron-ethyl plus molinate, compared with hand weeding in direct-seeded rice culture. In contrast, rice yield was reduced 44% by resistant M. vaginalis that survived the pyrazosulfuron-ethyl plus molinate treatment, compared with pyrazolate plus butachlor in transplanted rice culture. In vitro acetolactate synthase (ALS) activity of the R biotype was 183, 35, 130 and 31 times more resistant to imazosulfuron, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, respectively, than the S biotype. Imidazolinone herbicides, imazapyr and imazaquin had similar effect on in vitro ALS activity of the R and S biotypes. The in vivo ALS activity of the R biotype was also less affected than the S biotype by the sulfonylurea herbicides imazosulfuron and pyrazosulfuron-ethyl. Results of in vitro and in vivo ALS assays indicate that the resistance mechanism of M. vaginalis to sulfonylurea herbicides may be due, in part, to an alteration in the target enzyme, ALS. Since the level of resistance in the enzyme assay was much lower than that in the whole-plant assay, other mechanisms of resistance, such as herbicide metabolism, may be involved.  相似文献   

14.
BACKGROUND: Trifluralin‐resistant biotypes of water foxtail (Alopecurus aequalis) have been identified in wheat fields from northern Kyushu, Japan. Water foxtail is a winter‐annual grassy weed, causing substantial crop losses. This study reports on mutation in α‐tubulin (TUA) genes from water foxtail, the site of action of trifluralin. RESULTS: Two trifluralin‐sensitive (S) Chikugo and Ukiha biotypes and four trifluralin‐resistant (R) Asakura‐1, Asakura‐2, Tamana and Tosu biotypes of water foxtail were used for herbicide resistance analysis. R biotypes showed 5.7–30.7‐fold trifluralin resistance compared with the S biotypes. No differences in the uptake and translocation of 14C‐trifluralin were observed between Chikugo (S) biotype and Asakura‐1 (R) biotype. Most of the 14C detected in the plant material was in the root tissue, and no substantial increases were noted in shoot tissues. Comparative TUA sequence analysis revealed two independent single amino acid changes: change of Val into Phe at position 202 in TUA1 and change of Leu into Met at position 125 in TUA3 in Asakura‐1 biotype. In the Tamana (R) biotype, two amino acid changes of Leu to Phe at position 136 and Val to Phe at position 202 were observed in the predicted amino acid sequence of TUA1, compared with Chikugo (S) biotype. CONCLUSION: The results provide preliminary molecular explanation for the resistance of water foxtail to trifluralin, a phenomenon that has arisen as a result of repeated exposure to this class of herbicide. This is the first report of α‐tubulin mutation in water foxtail and for any Alopecurus species reported in the literature. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Pot experiments were conducted to evaluate the level of imazamox tolerance in five red rice ( Oryza sativa L.) and four barnyardgrass (three Echinochloa crus-galli (L.) Beauv. and one Echinochloa oryzoides (Ard.) Fritch) morphologically distinct biotypes collected from rice fields in northern Greece. The susceptibility of barnyardgrass biotypes to propanil was also studied. Red rice biotypes were not controlled by imazamox applied at 40 g ha−1. In contrast, 80 g imazamox ha−1 provided 56–84% red rice control (averaged across shoot number and fresh weight reduction). Not all barnyardgrass biotypes were susceptible to imazamox applied postemergence. However, propanil applied at 2.6 kg ha −1 controlled the E. crus-galli biotypes well, but propanil applied at rates of 2.6 and 5.2 kg ha −1 was not effective in reducing the shoot number and fresh weight of the E. oryzoides biotype. Propanil applied at 10.4 kg ha −1 reduced the shoot number and fresh weight of this biotype by 78 and 85%, respectively. In most cases, a linear equation ( y  = % of control, x  = g ha−1) provided the best fit for regressions between red rice or barnyardgrass shoot number or fresh weight and imazamox rates. The results of this study suggest that postemergence application of imazamox is not effective against all red rice and barnyardgrass biotypes found in the rice fields of Greece and that significant variability regarding herbicide efficacy among biotypes might exist.  相似文献   

16.
麦田抗性生物型荠菜对苯磺隆的抗性机制研究   总被引:4,自引:1,他引:3  
为明确抗性生物型荠菜对苯磺隆的抗性机制,分别测定了苯磺隆对抗性和敏感生物型荠菜体内乙酰乳酸合成酶(ALS)、谷胱甘肽-S-转移酶(GSTs)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的影响。结果表明:离体条件下,抗性生物型荠菜体内ALS对苯磺隆的敏感性明显降低,苯磺隆对荠菜抗性和敏感生物型ALS的抑制中浓度(I50)分别为0.722 8和0.052 1 μmol/L,抗性与敏感生物型I50的比值为13.87;活体条件下,施用苯磺隆后,抗性和敏感生物型荠菜ALS活性均受到一定程度的抑制,但抗性生物型ALS活性受到抑制后能逐渐恢复,而敏感生物型则不能恢复;经苯磺隆处理后,抗性生物型GSTs相对活力明显高于敏感生物型,而抗性和敏感生物型体内POD、SOD和CAT相对活力无明显差异。研究表明,抗性生物型荠菜体内ALS对苯磺隆敏感性降低是其抗药性产生的原因之一,而GSTs对苯磺隆代谢能力的差异也可能与荠菜对苯磺隆的抗性有关。  相似文献   

17.
18.
The effect of the monooxygenase inhibitor, 1-aminobenzotriazole (ABT) on isoproturon phytotoxicity and metabolism was studied in resistant (R) and susceptible (S) biotypes of Phalaris minor and in wheat (Triticum aestivum). Addition of ABT (2·5, 5 and 10 mg litre-1) to isoproturon (0·25, 0·5, 1, 2 and 4 mg litre-1) in the nutrient solution significantly enhanced the phytotoxicity of isoproturon against the R biotype. Isoproturon at 0·25 mg litre-1 reduced the dry weight (DW) of the S biotype by 77%, whereas the R biotype required 4·0 mg litre-1 for similar reduction. Addition of 10 mg litre-1 of ABT to the 0·25 mg litre-1 isoproturon caused 71 and 82% reduction in DW of R and S biotypes, respectively. Wheat was more sensitive to the mixture of isoproturon and ABT than the R biotype of P. minor. Reduced concentrations of ABT in the mixture from 10 to 2·5 mg litre-1 increased the DW of the R biotype more than that of the S biotype. The R biotype metabolised [14C]isoproturon at a faster rate than the S biotype. ABT (5 mg litre-1) inhibited the degradation of [14C]isoproturon in both biotypes of P. minor and in wheat. In the presence of ABT, about half of the applied [14C]isoproturon remained as parent herbicide in all the three species after two days. The metabolites were similar in the R and S biotypes and wheat as determined by co-chromatography with reference standards and mass spectroscopy (MS). ABT inhibited the appearance of the hydroxy and monomethyl metabolites and their conjugates in all the test plants. These results suggest that the activity of the enzymes responsible for the degradation of isoproturon is greater in the R than in the S biotype of P. minor, resulting in its rapid detoxification. Incorporation of the monooxygenase inhibitor ABT into the nutrient solution greatly inhibited the degradation of [14C]isoproturon in the R biotype and increased its phytotoxicity. Both hydroxylation and N-dealkylation reactions were found to be sensitive to ABT; inhibition of hydroxylation was greater than that of demethylation. Since ABT could not completely suppress isoproturon degradation, it is possible that more than one monooxygenase is involved. © 1998 SCI  相似文献   

19.
Monochoria vaginalis is one of the most serious weeds of rice fields in Asia. The species is predominantly selfing. To reveal the potential for multiple mutational events, outcrossing and gene flow in the sulfonylurea‐resistant (SU‐R) M. vaginalis populations, we investigated (i) if each SU‐R population was a single SU‐R biotype or a mixture of several SU‐R biotypes using restriction analysis or direct sequencing of acetolacatate synthase (ALS) genes and (ii) genetic diversity of SU‐R and ‐susceptible (S) populations using amplified fragment length polymorphism (AFLP) analysis. Nineteen or 20 individuals were sampled from four SU‐R and five SU‐S populations respectively. Amino acid substitutions conferring resistance in the SU‐R populations were Pro197Ser in the ALS1 or ALS3, or Asp376Glu in the ALS1 and each SU‐R population was composed of a single SU‐R biotype. In cluster analysis each SU‐R individual formed a cluster, whereas the individuals from a SU‐S population belonged to different clusters. Some SU‐R populations showed polymorphic AFLP loci. The results indicated that these SU‐R biotypes emerged from a single mutational event and any gene flow of SU‐R genes from adjacent populations did not occur. A low level of outcrossing and recombinations of SU‐R genes occurred within some SU‐R populations of M. vaginalis.  相似文献   

20.
The acaricidal activities of paeonol (2'-hydroxy-4'-methoxyacetophenone) and benzoic acid identified in the root bark of tree peony, Paeonia suffruticosa Andrews, against copra mite, Tyrophagus putrescentiae (Schrank), adults were examined using direct contact and vapour phase toxicity bioassays and compared with those of cinnamyl acetate, cinnamyl alcohol and 37 monoterpenoids as well as the acaricides benzyl benzoate, dibutyl phthalate and N,N-diethyl-m-toluamide (DEET). Based on LD(50) values in fabric piece contact toxicity bioassays, the acaricidal activities of benzoic acid (4.80 microg cm(-2)) and paeonol (5.29 microg cm(-2)) were comparable to that of benzyl benzoate (4.46 microg cm(-2)) but more pronounced than those of DEET (30.03 microg cm(-2)) and dibutyl phthalate (25.23 microg cm(-2)). In vapour phase toxicity bioassays, paeonol and benzoic acid were much more effective in closed containers than in open ones, indicating that the effects of these compounds were largely due to action in the vapour phase. As judged by 24 h LD(50) values, (1S)-(-)-verbenone (7.42 mg per disc) was the most toxic fumigant, followed by (1S)-(-)-camphor, (S)-(+)-carvone, (R)-(-)-linalool and (+/-)-camphor (10.45-18.18 mg). Potent fumigant toxicity was also observed with paeonol, (2S,5R)-(-)-menthone, (+/-)-citronellal, benzoic acid, (1S,4R)-(-)-alpha-thujone and (R)-(+)-pulegone (25.10-34.63 mg). Neither benzyl benzoate, DEET nor dibutyl phthalate caused fumigant toxicity. Paeonia root bark-derived materials, particularly paeonol and benzoic acid, as well as the monoterpenoids described, merit further study as potential acaricides or as leads for the control of T. putrescentiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号